

Arab Academy for Science Technology & Maritime Transport

The International Maritime Transport and Logistics Conference

"Marlog 11" Conceptual Framework for Integration on Renewable Energy Sources for Marine Port Electrification

Prof. Nikitas Nikitakos
University of the Aegean, Chios, Greece,
Dr. Afrokomi-Afroula Stefanakou
University of the Aegean, Chios, Greece,
Dr. Andrey Nikishin
Kaliningrad State Technical University, Kaliningrad, Russia,
Dr. Maksim Kharitonov
Kaliningrad State Technical University, Kaliningrad, Russia,
Dr. Elena Gordeeva
Kaliningrad State Technical University, Kaliningrad, Russia,
Dr. Anatoliy Popov
Admiral Ushakov Maritime State University, Novorossiysk, Russia,
Dr. Pavel Kovalishin
Baltic Fishing Fleet State Academy of Kaliningrad State Technical University, Kaliningrad State Technical, Russia.

Towards a **BLUE** SUSTAINABLE**BLUE** ECONOMY

Years Of Excellence

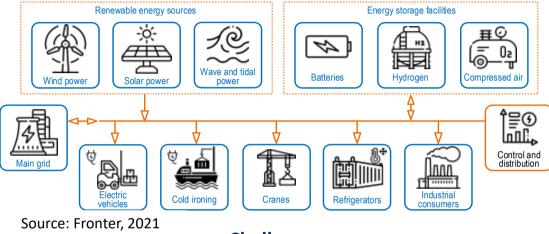
20 - 22 March, 2022 Hilton Green Plaza Hotel

INTRODUCTION

Marine ports connect a nation as well as the world through the maritime transport networks. *Ports* and cities are considered interdependent, where the development of port activity leads to urban development and conversely.

"Marlog

- Nowadays, most ports use diesel engines that lead to a substantial amount of pollutant gases., Marine port operations are often associated with a variety of consequences (e.g. noise & light pollution, water & soil pollution, etc.) resulting from port and ship activities and land transport.
- In combination with the nearby industrial activities, ports have an expected negative impact on the environment and affect the work and living conditions of residents living in cities near the port.


The paper proposes a **DSM*** for the identification and evaluation of the various RES and their integration into marine port grid using the AHP* and taking into account a number of criteria as well as the energy requirements of port activities (e.g. cold ironing, electrical moving assets, etc.). The Kaliningrad sea fishery port (Russia) is used as a case study.

Analytic Hierarchy Process> Multi-Criteria Decision Analysis (MCDA) technique

Decision Support Model

The International Maritime Transport and Logistics Conference

ZERO-EMISSION PORT

Challenges


Cold ironing	 Cold ironing infrastructure at marine terminals Lack of standardization Absence of concrete legislation/regulation
RES	 Land availability Dependence on external factors Inconsistency of RES
Energy storage	High priceBattery degradation in high dynamic modes

The concept

- Minimize the connection to the main grid
- Development of microgrids/smartgrids
- Use of RES mixture
- WT: mainly offshore due to land limitations in the ports
- PV: on building roofs & warehouses or floating
- Wave, tidal devices, etc.: depending on port characteristics (e.g. availability of resources, etc.)
- Use energy storage units
- Adoption of cold ironing from ports (problems addressable)
- Compliance with international environmental regulations.

The International Maritime Transport and Logistics Conference

Infrastructure overview

Time of Day

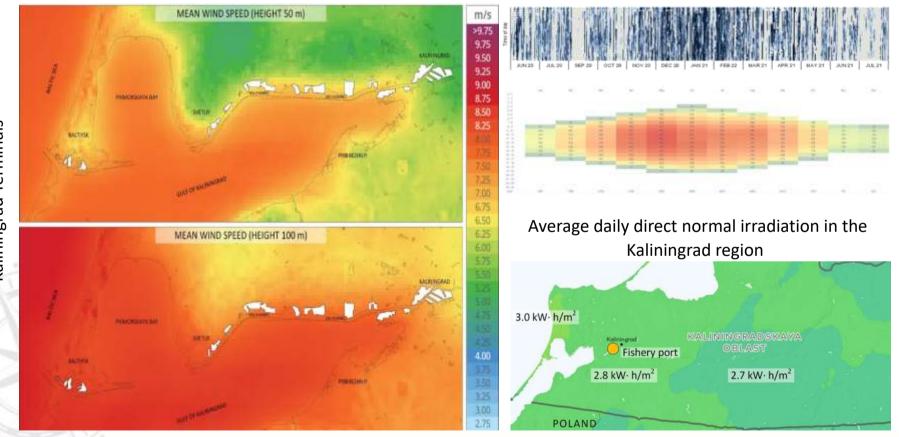
Characteristics	Units	Value
Number of ship terminals	-	17
Liquid cargo terminal capacity	cub. m	31 400
Bulk cargo terminal capacity	tons	18 000
Covered warehouse capacity	cub. m	24 000
Open storage area	sq. m	65 000
Refrigerator capacity	tons	6 000
Number of portal cranes	units	7
Length of crane runways	m	2 100
Lifting capacity of cranes	tons	5
Number of fork and bucket loaders	units	14

GENERAL DATA: PORT OF KALININGRAD (Fishery port)

Geographical Location

Territory plan

Average Power Consumption (Kw)



PORT OF KALININGRAD: CLIMATE & RES

Wind data

Solar data

"Marlog 11"

Mean Wind Speed in the Area of the Port of Kaliningrad Terminals Choosing the most suitable energy alternative can be a challenging issue as many criteria have to be considered, such as *technical*, *economic*, *social*, *spatial*, and *environmental* that may be in *conflict with each other*.

In order to select the most appropriate energy alternative, this stage of methodology accepts that there are *graduations in the (5) renewable energy technologies*, which arise from the evaluation of *energy options*^{*} in *various parameters* **.

**Evaluation criteria: Literature review + Interviews	Abbreviation	Type of criterion		
Resource availability	RA	Technical		
Technological maturity	TM	Technical		
Know-how	K-H	Technical		
Capacity factor	CF	Technical		
Investment cost	IC	Economic		
O&M cost	O&M	Economic		
Land requirements	LR	Spatial		
Job creation	JC	Social		
Social acceptance	SA	Social		
Impact on ecosystem	IOE	Environmental		

*Wind turbines (onshore & offshore) Solar panels (onshore & offshore) Wave devices

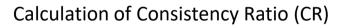
"Marlo

The ten evaluation criteria may not be of equal importance. Therefore, the most important criteria should be weighted more than the others.

This can be achieved through the *AHP* & *pair-wise comparison matrix*.

Development of the hierarchical structure of the selection problem

Creation of the pair-wise comparison matrix of (10) evaluation criteria according to 9-point scale of Saaty (1980)

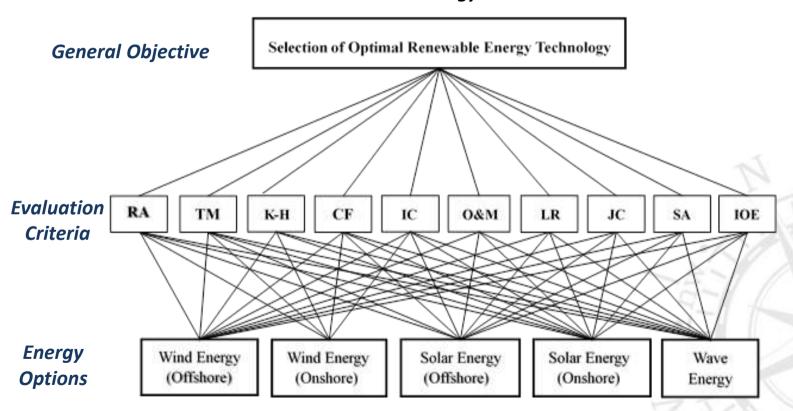

Calculation of the weights of the (10) evaluation criteria, including a number of individual steps

9-point scale of Saaty

"Marlo

	0.7. 27				
Intensity of importance	Definition				
1	Equal importance				
3	Weak importance of one over another				
5	Essential or strong importance				
7	Demonstrated importance				
9	Absolute importance				
2,4,6,8	Intermediate value between the two adjacent judgments				

Substeps



2

3

4

Hierarchical structure for the selection of the most appropriate RES technology

<u>"</u>Marlog 11"

Criteria	RA	тм	IC	0&M	ΙΟΕ	SA	LR	JC	К-Н	CF	Weights (%)
RA	0.316	0.383	0.349	0.349	0.297	0.259	0.23	0.206	0.188	0.173	27.5
ТМ	0.158	0.191	0.232	0.232	0.223	0.207	0.191	0.177	0.164	0.154	19.4
ΙΟ	0.105	0.097	0.116	0.116	0.148	0.155	0.153	0.147	0.141	0.134	13.2
0&M	0.105	0.097	0.116	0.116	0.148	0.155	0.153	0.147	0.141	0.134	13.2
ΙΟΕ	0.079	0.063	0.058	0.058	0.074	0.103	0.115	0.118	0.117	0.115	9
SA	0.063	0.048	0.038	0.038	0.037	0.051	0.076	0.088	0.094	0.096	6.3
LR	0.052	0.038	0.029	0.029	0.024	0.026	0.038	0.059	0.07	0.077	4.5
JC	0.045	0.032	0.023	0.023	0.018	0.017	0.019	0.029	0.047	0.057	3.1
K-H	0.039	0.027	0.019	0.019	0.014	0.013	0.012	0.014	0.023	0.038	2.2
CF	0.035	0.024	0.016	0.016	0.012	0.01	0.009	0.009	0.011	0.019	1.6

Pair-wise comparison matrix & weights

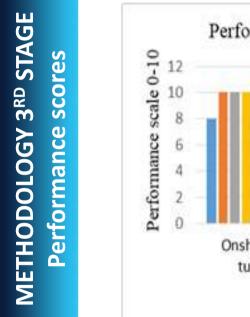
Consistency Index (CI) $CI = \frac{\lambda_{max} - n}{n - 1} = \frac{10.37 - 10}{10 - 1}$

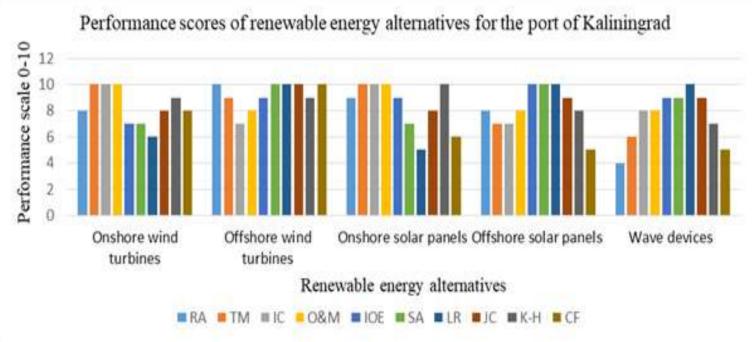
Where n= number of evaluation criteria λ _max= maximum eigenvalue

Consistency Ratio (CR) $CR = \frac{CI}{RI} = \frac{0.041}{1.49} = 0.027$

Where *RI* = *Random Consistency Index of a random-like matrix*.

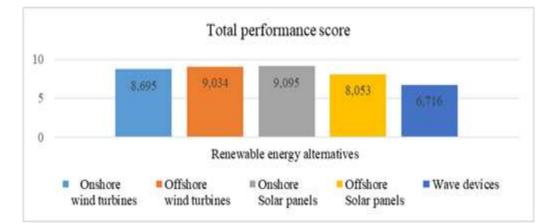
CR values <0.1 are acceptable


Experts were asked through **interviews** to evaluate the performance of each energy option in each evaluation criterion for the case study, taking into consideration the hypothetical question:


"Marlog

"What would be the performance e.g. of first energy option in the first evaluation criterion, if the first energy option is used in the fishery port of Kaliningrad;" and so on.

evaluation	Evaluation	Scores			
	criteria	0	10		
	RA	Low and unpredictable	High and predictable		
	ТМ	Technology is still relatively new	Technology has been used for a long time		
10 e	IC	Most expensive	Least expensive		
	0&M	Most expensive	Least expensive		
Performance scores of criteria	ΙΟΕ	Significant impact on the environment	Minor/negligible impact on the environment		
	SA	Negative public attitude toward specific renewable energy source	Positive public attitude toward specific renewable energy source		
	LR	No land available/Conflicts with other users	Spacious land available/No conflicts		
	JC	Few/negligible job opportunities	Substantial job opportunities		
	К-Н	Lack of specialized human resources in the region/country	Availability of specialized human resources in the region/country		
	CF	Low	High		


The International Maritime Transport and Logistics Conference

Individual overall performance scores of (5) renewable energy technologies

Evaluation	Weight	Energy alternatives						
Criteria	Factor (%)	Onshore wind turbines	Offshore wind turbines	Onshore Solar panels	Offshore Solar panels	Wave devices		
RA	27.5	2.2	2.75	2.475	2.2	1.1		
TM	19.4	1.94	1.746	1.94	1.358	1.164		
IC	13.2	1.32	0.924	1.32	0.924	1.056		
0&M	13.2	1.32	1.056	1.32	1.056	1.056		
ΙΟΕ	9	0.63	0.81	0.81	0.9	0.81		
SA	6.3	0.441	0.63	0.441	0.63	0.567		
LR	4.5	0.27	0.45	0.225	0.45	0.45		
JC	3.1	0.248	0.31	0.248	0.279	0.279		
К-Н	2.2	0.198	0.198	0.22	0.176	0.154		
CF	1.6	0.128	0.16	0.096	0.08	0.08		

CONCLUSIONS

- DSM* provides scores & well-justified classifications for the various RES, which allow interested parties to select the most appropriate energy alternatives.
- Different classifications may arise if the proposed methodology is applied to different marine ports, due to different port characteristics.
- The use of a RES mixture can offer a more comprehensive approach to a long-term energy problem.
- Results are in line with previous studies on the development of alternative energy solutions in the light of the zero-emission port and show a clear trend in this direction.
 - PV: low investment and O&M costs, easily adoptable by ports (*e.g. on the roofs of buildings and warehouses*).
 - WT: mainly offshore, due to land limitations in the port, technology has been used for a long time.
 - □ Wave devices: depending on conditions in the port.
- The concept of microgrids can encourage marine ports to invest in more environmentally friendly solutions (e.g. cold ironing, storage solutions, electric vehicles, etc.)
- DSM can be used for other complicated decision-making issues that include expert's involvement & extensive analysis, as it is extremely flexible & could incorporate a variety of criteria and alternatives.

"Marlog

The International Maritime Transport and Logistics Conference "Marlog 11"

The authors would like to acknowledge the support of the International Association of Maritime Universities (research project number 20210202-BFFSA KSTU).

Thank YOU

Prof. Nikitas Nikitakos University of the Aegean, Chios, Greece nnik@Aegean.gr

> 20 - 22 March, 2022 Hilton Green Plaza Hotel