

"MARLOG 12"

Sustainable & Innovative Technologies

Towards a Resilient Future

12 - 14 March, 2023 Alexandria - EGYPT

Alternatives Fuels for the Maritime Sector. Green Hydrogen.

Eng. Luis Núñez

Head of Europeans Affairs Algeciras Bay Port Authority

Contents

Why do we need alternatives fuels for the maritime sector? .1

Types of alternatives fuels .2

Algeciras Port Projects .3

Medports efforts .4

Valencia Port Projects
Toulon Port Projects

International Context

UNITED NATIONS CLIMATE CHANGE

COP 27

SHARM EL-SHEIKH 7-18 NOVEMBER 2022

Europe must reduce emissions from transport further and faster.

01

04

ETD MARITIME

AFIR

EU ETS

FUEL EU

With the new Energy Tax Directive, tax exemptions for marine fuels are partially ended.

Fuels sold in the European Economic Area, for trips within the EEA, will no longer be exempt from taxes

Boosting the expansion of LNG and shore power supply facilities in the main ports of the EU.

> The former Alternative Directive becomes a Regulation

Maritime transport is incorporated into the EU Emission Trade System.

Ships are responsible for 100% of their CO2 Fuel Infrastructure emissions in and between EU ports, and 50% when entering or leaving the EU.

> They should pay according to the carbon market price of each moment (€/CO2 Ton)

It will promote the adoption of low-emission fuels by imposing limits on the carbon intensity of fuels on board ships.

Same scope of action as ETS, although the levels of carbon intensity of fuels reduction will increase progressively in a different way (2% 2025, -6% 2030, 75% in 2050).

Tráfico/Servicio

Contenedores

Reefer

Carga rodada

Practicaje

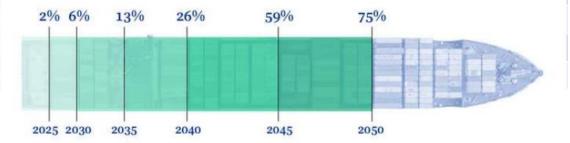
Remolque

MARPOL

The FuelEU maritime regulation will oblige vessels above 5000 gross tonnes calling at European ports

(with exceptions such as fishing ships):

→ to reduce the greenhouse gas intensity of the energy used on board as follows



Vessels >5 000 gross tonnes of all ships

of CO2 emissions from the maritime sector

Annual average carbon intensity reduction compared to the average in 2020

→ from 2030, to connect to onshore power supply for their electrical power needs while moored at the quayside, unless they use another zero-emission technology

A.P. Moller - Maersk continues green transformation with six additional large container vessels

05 October 2022

Ocean Transport Sustainability West Central Asia World Premiere: Launching of the World's Largest LNG-Powered Containership and Future CMA CGM Group Flagship

Wednesday, September 25, 2019

Copenhagen, Denmark - A.P. Molle vessels that can sail on green meth capacity of approx. 17,000 contains

Our customers are look to operate on green me climate neutral transpo Agreement's goal of lin

> Henriette Hallberg Thygesei CEO of Fleet & Strategic Brands

- An outstanding tribute to the CMA CGM Gro
- Packed with an extensive array of environment
- CMA CGM, the world's first maritime shippin large containerships

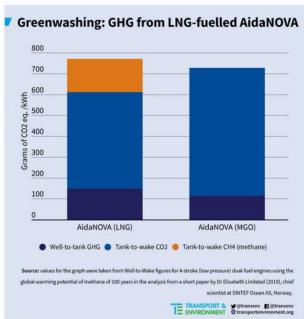
NEWS

CLEAN MARINE FUELS: TOTAL TO SUPPLY MSC CRUISES' UPCOMING LNG-POWERED CRUISE SHIPS

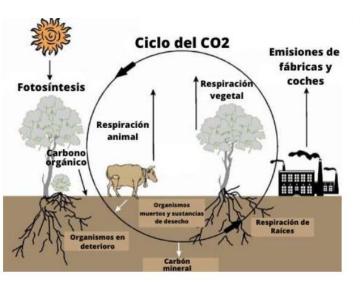
25/03/2021

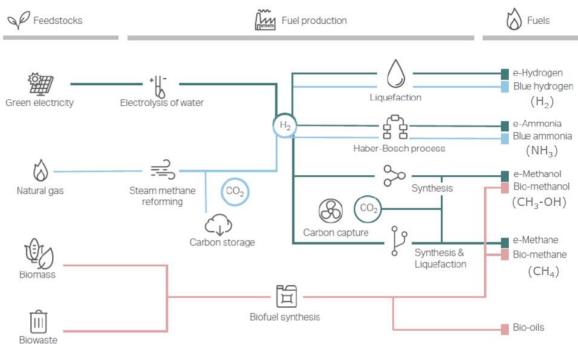
- LNG fuel will sharply reduce emissions from ships and improve air quality at all
- . New MSC Cruises' LNG vessels to be the most technologically and environmentally advanced in the world

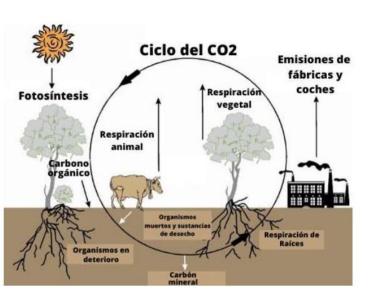
Geneva, March 25, 2021 - MSC Cruises and Total announced today a supply agreement for approximately 45,000 tons per year of Liquefied Natural Gas (LNG) to MSC Cruises' upcoming LNG-powered cruise ships.

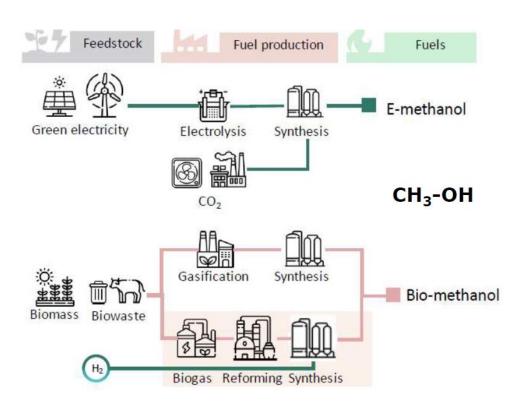


This month news

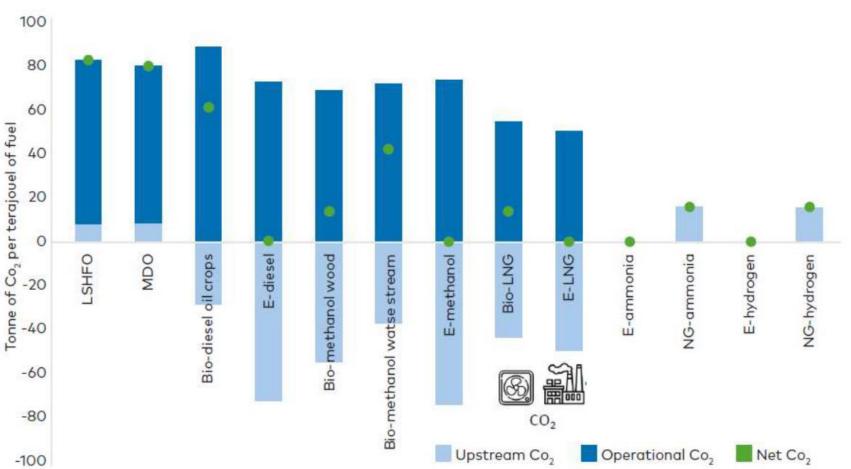

Types of alternative fuels. LNG




Types of alternative fuels. Hydrogen derivatives



Types of alternative fuels. Hydrogen derivatives



	Terminology	Technology	Feedstock/ Electricity source	GHG footprint*	
PRODUCTION VIA ELECTRICITY	Green Hydrogen		Wind Solar Hydro Geothermal Tidal	Minimal	
	Purple/Pink Hydrogen	Electrolysis	Nuclear	Minimai	
	Yellow Hydrogen		Mixed-origin grid energy	Medium	
PRODUCTION VIA FOSSIL FUELS	Blue Hydrogen	Natural gas reforming + CCUS Gasification + CCUS	Natural gas coal	Low	
	Turquoise Hydrogen	Pyrolysis	Natural gas	Solid carbon (by-product)	
	Grey Hydrogen	Natural gas reforming	Natural gas	Medium	
	Brown Hydrogen	Gasification	Brown coal (lignite)	High	
	Black Hydrogen	Gasinculon	Black coal	riigii	

^{*}GHG footprint given as a general guide but it is accepted that each category can be higher in some cases.

Types of alternative fuels. Readiness.

MATURE

Solutions are available, and none or marginal barriers are identified...

SOLUTIONS IDENTIFIED

Solutions exist, but some challenges on e.g. maturity and availability are identified.

MAJOR CHALLENGES

Solutions are not developed or lack specification.

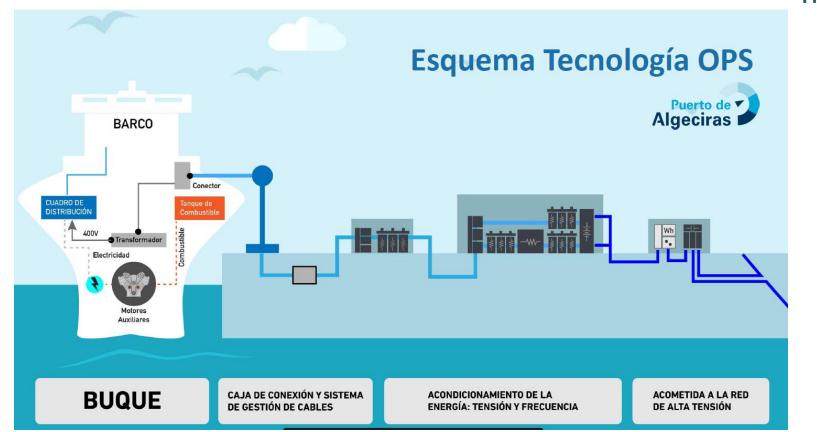
	Feedstock availability	Fuel production	Fuel storage, logistics and bunkering	Onboard energy storage & fuel conversion	Onboard safety and fuel management	Vessel emissions	Regulation & certification
E-ammonia	\Diamond						
Blue ammonia							
E-methanol					\Diamond		
3io-methanol					\Diamond		
E-methane					\Diamond		
3io-methane					\Diamond		
Bio-oils							

Alternative fuels deployment

Supply from the substation.

Internal GRID >

Next actions >



Ammonia as an alternative fuel for ships

July 2022

Summary of 1H.2022

= Joint Study of Common Issues =

I am One with Infinite Missions

ITOCHU Corporation
Green Innovation Business Unit

Maritime transport emissions reduction

Getting to Zero Coalition

Accelerating maritime shipping's decarbonization with the development and deployment of commercially viable deep sea zero emission vessels by 2030 towards full decarbonization by 2050.

The Getting to Zero Coalition is a powerful alliance of more than 200 organizations including 160 companies within the maritime, energy, infrastructure and finance sectors, supported by key governments and IGOs.

LNG. Endesa initiative.

PROJECT DESCRIPTION

Construction of an LNG storage area in Algeciras Port, to supply LNG to vessels and bunker barges

Initial storage capacity: up to 10.000 m³.

Phase 1: 4x1.000m³

\(\frac{1}{2}\)

Phase 2: up to 10.000 m3 depending on demand development

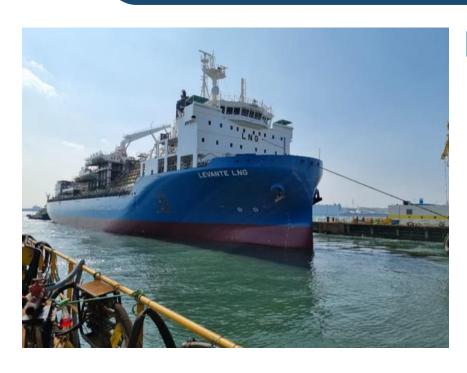
BUDGET

Initial investments: 35,0 M€

TIME PLAN

Start date: 2021

First vessel: 2023



SOUTH QUAY AND SPACE FOR FURTHER STORAGE CAPACITY (FUTURE DEVELOMENTS)

LNG supply vessel

PROJECT DESCRIPTION

Newbuild bunker vessel with 12,500 m3 storage capacity will deliver LNG on Algeciras Port.

BUDGET

Project: 56 M€

TIME PLAN

Start operational date: 2020/23

Biofuels. EVOS Expansion

PROJECT DESCRIPTION

New storage and delivery facilities for biofuels (biomethanol, biodiesel, HVO) and feedstock in Algeciras Port, to supply local demand and potential bunker (biofuels/methanol).

Additional Capacity feedstock: up to 35k m3. Additional capacity biofuels: up to 65k m3.

BUDGET

Storage and delivery facilities: 50 M€

TIME PLAN

Start operational date: 2025/26

Production of green hydrogen and derivatives

PROJECT DESCRIPTION

Construction of a Green H2 production plant in Algeciras Port, to supply local demand, export and bunker (ammonia/methanol).

Capacity: up to 1.000 MW.

BUDGET

H2 Production: 3.000 M€ (Andalucía) Renewable electricity (3 GW): 2.000 M€

TIME PLAN

Start operational date: 2027

Production of green hydrogen and derivatives

PROJECT DESCRIPTION

Development of a Green H2 production plant in Algeciras Port, to supply local demand, with significant scale-up potential.

Capacity: 100 MW under development, with potential of over 500 MW.

BUDGET

H2 Production: 140 M€

Renewable electricity: 200 M€

TIME PLAN

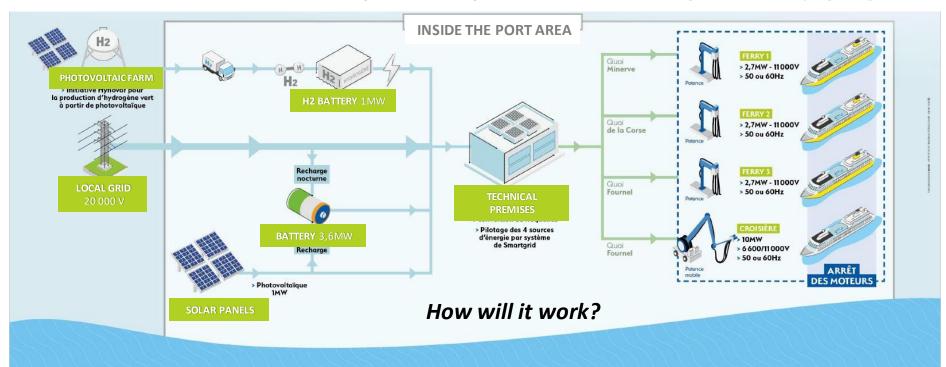
Start operational date: 2025 for the first 100 MW and potential to grow post-2027 to >500 MW

Ports of Toulon Bay

Working on...

Decarbonization of Maritime Transport in the Mediterranean \checkmark

Alternatives fuels for the Maritime Sector / Green Hydrogen ✓



Ports of Toulon Bay

Onshore Power Supply (OPS) implementation

Works are currently under completion => OPS will be operational by spring 2023

An energetic mix combining local grid together with hydrogen and photovoltaic

Hydrogen value chain & local ecosystem

Production

Storage

Transportation

Distribution

Port
Maritime
Wine in

PRIVATE & PUBLIC USES

- Mobility •
- Construction
 - Port sector •
- Maritime sector
 - Wine industry
 - Training... •

An example of port use in Toulon Bay

the « standbhy » project

THE PROJECT: The implementation of a 350-kW mobile hydrogen generator to connect ships docked in the port area (Brégaillon Cargo Terminal).

Août 2023
Purchasing of the generator

implementation and 1st trials at Brégaillon Cargo Terminal + La Seyne Cruise Terminal

USAGES PRIVÉS & PUBLICS

Mobilité

BTP

Secteur portuaire

Domaine maritime

Domaine viticole

Formation ...

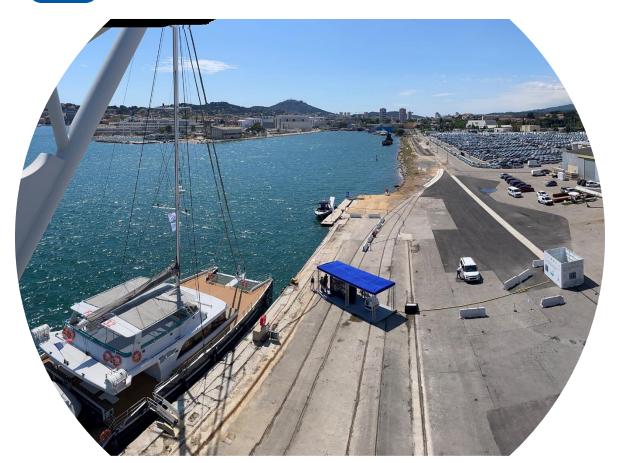
EXPECTED IMPACTS

- Reduce pollution related to maritime activity
- ✓ Offer a scalable, mobile and agile solution for isolated terminals
- ✓ Stimulate the development of the hydrogen industry

Nov. 2022

Sizing of the implementation and work on the fueling logistics

Nov. 2021 Obtention of a 0,8M€ Regional

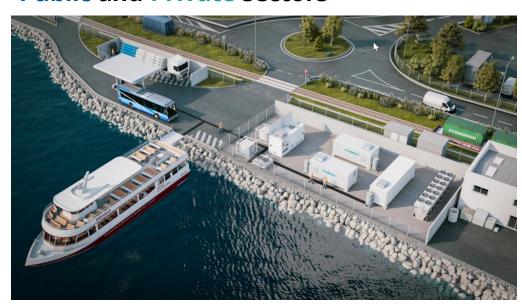

Regional subsidy

Ports Rade de Toulon

An example of port use in Toulon Bay

Le projet « StandbHy »

Ports Rade de Toulon



An innovative project that brings together **Public and Private sectors**

HYNOMED was created in 2020, as a result of a Public/Private Partnership, including Engie Solution, the Chamber of Commerce and Industry and Caisse des Dépôts et Consignations (Public Bank).

The company is setting up a green H2 production and distribution station (400 kg/day) inside the Brégaillon Cargo Terminal, which will be used to supply H2 micro-systems, for both maritime and land uses.

This model can be duplicated on site (possibility of increasing to 800 kg / day) and throughout the territory.

Thank You