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-Reduction of greenhouse gas (GHG) emissions from shipping

-Contribution to global and regional targets for climate neutrality and decarbonization
-Paris Agreement and European Green Deal

-“IMO Initial Strategy for the Reduction of GHG emissions from Shipping”
Replacement of fossil fuels by alternative fuels and energy sources 

- A number of alternative fuels

-Hydrogen and ammonia seem to have the higher environmental benefits, 
-but high capital investments for the installation of new engines and fuel systems, port 

infrastructure, and increased operational costs due to their high prices. 

Introduction



Scope

This paper analyses the costs and benefits associated with the use of hydrogen and ammonia as 
marine fuels focusing on various production methods, comprising blue fuels – produced from fossil 

sources and using carbon and capture storage (CCS) - and green fuels – coming from renewable 
energy sources. 

-A cost-benefit analysis of the use of hydrogen and ammonia as marine fuels in order to specify 
the cost differences between these fuels and the conventional ones and make policy 

recommendations on how this existing ‘cost gap’ could be somehow alleviated through market-
based measures (MBMs) to stimulate further investments on these fuels. 

-Additional identified challenges – including availability, safety and regulatory aspects - are also 
touched upon in this paper. 



-Both hydrogen and ammonia can be employed as marine fuels in different 
forms based on the energy sources used for their production. 

-In case their production is based on fossil energy sources, they can be grey 
or blue; in case they are produced from renewable energy, they are called 

green fuels.

-Blue fuels – use carbon capture and storage (CCS) technology during the 
fuel production in order to reduce their carbon intensity, a reduction that 

reaches up to 90% compared to grey fuels. 

-Blue hydrogen and ammonia cannot be considered as fossil-free fuels in 
contrast to green fuels that are produced from electricity coming from 

renewable energy sources such as solar, wind, hydro, tidal wave, and 
geothermal energy. 

Green and Blue Hydrogen and Ammonia



Green and Blue Hydrogen 

•Green hydrogen is a sulfur free fuel with very low carbon intensity - GHG emissions reductions 
are even higher than 85% of conventional fuels. 

•However, its low volumetric energy density requires high fuel storage volumes onboard and 
reduces the cargo space (Lemmon et al., 2010) and makes weak its business case for use in deep-

sea shipping where the needed fuel storage volumes are very high. 
•Additionally, hydrogen is easily ignitable over a wide range of fuel-air mixing ratios. 
•Safe storage and handling of hydrogen onboard the vessels into major challenges. 

•The demand for hydrogen as marine fuel is still emerging at the moment, with no distribution or 
bunkering infrastructure for ships currently in place. 

•Upcoming port initiatives on the building of refueling points for hydrogen at major ports around 
the globe. 

•The unique areas where ports are located also turn 
them into promising energy hubs for the production and 
storage of renewable energy that could also be used for 

the production of green fuels. 



Green and Blue Ammonia 

•Grey ammonia has a carbon footprint close to fossil fuels; green ammonia, though, can lead to 
almost zero CO2 emissions while blue ammonia can also drastically reduce CO2 emissions 

(Hansson et al., 2020). 

•However, high toxicity of ammonia and safety considerations (Schönborn & Lee, 2022). 

•Compared to hydrogen, ammonia is easier and less energy consuming to store requiring less 
severe temperature and pressure conditions for its transportation (Lemmon et al., 2010). 

•Moreover, ammonia is already transferred as a cargo by sea with 120 ports across the globe 
already having in place facilities for handling ammonia. 

•The bunkering infrastructure for ammonia is not yet in place in any port around the world; 

•Limited availability of ammonia, and especially green 
ammonia. The production of green ammonia is currently 

emerging (77% of ammonia produced globally is grey).



Method/Data

-Cost-benefit analysis in order to specify the cost differences between these fuels and the 
conventional ones and make policy recommendations on how this existing ‘cost gap’ could be 

somehow alleviated.

-The cumulative cost for the lifespan of a ship is calculated considering both the capital 
expenditure (CAPEX) and the operational expenditure (OPEX) (Kim et al., 2020). 

-The CAPEX includes the investment cost in €/kW for the propulsion systems, including engines 
and components (for four-stroke and two-stroke engines) (Korberg et al., 2021), while the fuel 

costs are included in the OPEX.

Cumulative cost = CAPEX +  

where n is the age of the ship from 1 to 25 years, d is the discount rate and r is the inflation rate. 



Method/Data

In order to estimate the benefits, the emission costs from the use of the different marine fuels were 
calculated by multiplying the life-cycle emissions from the use of each fuel with the fuel 

consumption of the vessel and the emission costs per tonne of emission using the formula below:

where Cm,m´,bn,gn,bn´,gn´,bh,gh are the emission costs from the use of the MDO in 4stroke and 
2stroke engines, blue and green NH3 in 4stroke engines and 2stroke engines and blue and green H2 

in 4stroke engines.

Ec,s,n,p are the life-cycle CO2 eq., SOx, NOx, PM emissions per kWh from the use of the different 
fuels.

C´c,s,n,p are the emission costs per tonne of CO2 eq., SOx, NOx, PM emissions (90€/tonne of 
CO2eq., 6500€/tonne of SOx, 4700€/tonne of NOx and 2500€/tonne of PM2,5) (Victoria Transport 

Policy Institute, 2020). 

Cm,m´,bn,gn,bn´,gn´,bh,gh = Ec,s,n,p * C´c,s,n,p 

 



CAPEX and OPEX for the use of MDO, NH3 and H2 as marine fuels in 
4stroke and 2stroke engines

Figure 1: CAPEX and OPEX for different fuels per year (€)

  

The case of a tanker vessel with an engine of 6000 kW, a discount rate of 2% and an inflation rate of 10%.



CAPEX and OPEX for the use of MDO, NH3 and H2 as marine fuels in 
4stroke and 2stroke engines

Figure 2: CAPEX and OPEX for different fuels for the whole lifespan of the vessel (€)

  



Emission costs and CAPEX/OPEX  from the use of different marine fuels 

Figure 3: Total emission costs and CAPEX/OPEX for different fuels (€)

  



Emission costs and benefits from the use of different marine fuels 

Figure 4: Additional costs and benefits of ammonia and hydrogen in relation to MDO (€/kJ)

  



Conclusions and policy implications

-Green hydrogen is by far the most costly option followed by green ammonia, blue hydrogen and blue 
ammonia.

-The emission costs of green hydrogen (followed by green ammonia) are minimal compared to 
conventional – and even blue – fuels. 

-The use of renewable energy sources for the production of fuels is critical.

-The high total expenditure associated with the use of green fuels turns the introduction of MBMs -
carbon taxes on marine fuels based on their GHG energy intensity or through the subsidization of 

renewable fuels, at least in the initial phase of their uptake - essential.

-Although the production costs of green fuels are expected to decrease in the long run due to technical 
maturity and increased demand, for the time being their high CAPEX and OPEX represent the greatest 

challenge for their wide adoption by the industry.  



Conclusions and policy implications

-Additional challenges; safety concerns, regulatory aspects, restricted availability and an uncertain 
regulatory framework. 

-Safety concerns for the use of both ammonia and hydrogen due to their particular properties, the high 
explosivity of hydrogen and the corrosion and toxicity of ammonia.

-In this direction, their employment is not allowed under the current IMO regulations and the relevant 
safety protocols need to be revised accordingly.

-Not all renewable fuels are considered suitable for use for all maritime segments. Especially with regards 
to short sea shipping, electrification is gaining momentum while the use of ammonia for passenger 

transport is not considered as a feasible option.



Conclusions and policy implications

-At the moment, the production of renewable fuels is limited and the refueling infrastructure at ports is 
currently being developed.

-A number of shipping companies around the globe have already invested in alternative fuels ordering 
newbuildings with dual engines that can use both conventional fuel and ammonia (Christodoulou and 

Cullinane, 2021).

-Shipping industry coalitions can also play a critical role. 

-Green corridors – an industry-driven initiative that seeks to create “specific trade routes between major 
port hubs where zero-emission solutions have been demonstrated and are supported” – can pave the 
way for the development of ecosystems ‘with targeted regulatory measures, financial incentives, and 

safety regulations that can also put conditions in place to mobilise demand for green shipping on specific 
routes’ (Getting to Zero Coalition, 2020).  
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