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Background Motivation 
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• Energy shortages and environmental 
deterioration drive renewable energy 
demand. Due to technical advances, 
wind energy has a low environmental 
effect and low operational costs [1]. 

• Wind turbines have a either 
horizontal or vertical axis. Large 
onshore and offshore projects 
require HAWTs, whereas suburban 
areas prefer VAWTs, for which low 
wind-speed has a large impact on the 
turbine’s performance. 
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Figure 1. Comparison of turbines performance VS TSR



Pic here 
according to 

topics

Figure 2. (a) Darrius Turbine; (b) Savanous Turbine
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However, other design strategies have been investigated, such as:

• the use of helical blades, or the addition of flaps or 
vortex generators to the blades [15].

• the use of augmentation technologies on vertical DAWT 
[4,16]. 

• Slotted blades have also been investigated recently 
[17,18]. 

• Upstream Deflector blades have also been investigated 
recently [25]. 

• One innovative idea was through opening the blade 
trailing edge, and forming what is called a J-shaped 
blade [19,20].
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Figure 3.Airfoil Characteristics



Pic here 
according to 

topics

Figure 4. (a) Concave-In; (b) Concave-Out; (c) Turbine with cambered blades.
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Figure 5. (a) Increased number of blades (b) Increased chord (c) High solidity turbine
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Figure 6. (a) Top view (b) Front view of helical rotor (c) Commercial helical turbine.
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Figure 7. (a) H-Rotor with NACA 0021 (thick) airfoil (b) H-Rotor with S1210 (thin) airfoil 
(c) Commercial turbine with thicker blade.
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Figure 8. (a) H-Rotor with VG; (b) Typical VG details; (c) DAF INDAL turbine with VG.



Pic here 
according to 

topics

Figure 9. (a) H-rotor with a trailing edge flap (b) Details of an airfoil with a trailing edge 
flap (c) Illustration of a H-rotor with trailing edge flaps.
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Figure 10. (a) H-Rotor with J-profile airfoil (b) Details of J-profile airfoil (c) Commercial 
turbine with J-profiled blade.
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• Numerical studies on J-shaped 
airfoils [19,20] have demonstrated 
that the self-starting ability of a 
VAWTs could be improved using an 
opening on the airfoil. Research 
indeed showed an almost linear 
starting torque enhancement with a 
cut in the outer part of the blade 
[19].

• Other authors had different views, 
they claimed that a J-shaped blade 
design does not provide any 
performance enhancement [22], and 
they did not recommend their use 
for Darrieus-type VAWTs.
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• Further research was performed here 
to evaluate the effect of the solidity 
and λ on the performance of 
Darrieus VAWTs. Two main regions 
are usually considered for the 
operational regions of Darrieus 
turbines, either operating in the high 
TSR region (λ = 5 or λ = 6) or 
operating in the low TSR region (λ = 
1.5) [23].
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• For high TSR values, the wind flow is 
mainly attached to the airfoil, due to 
the low angles of attack. However, 
when the TSR is in the low region, 
the angle of attack of the flow on the 
airfoil increases, leading to dynamic 
stall effects that highly influence the 
turbine performance [23]

• Thus, high solidity (typically around 
0.3–0.5) and low TSR seem favorable 
for the J-shaped design.
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Figure 11. J-blade with different openings
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Research Objectives 
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• This research aims to create an optimized J-shaped blade to 
enhance the Darrieus turbine's performance by encouraging 
resilient, sustainable infrastructure that is built and run to 
have the least negative effects on the environment that 
maintains the Darrieus turbine's performance while 
improving starting torque, utilizing a NACA0015 airfoil as a 
model. 

• The earlier research on J-shapes [5-7] and the more recent 
study [10] concentrated on blades with a hollow and hair-
like form; however, they did not investigate the inner shape 
of the construction. Thus, this study evaluates the 
performance of J-shaped blades with an interior-filled 
construction.
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Figure 12. J-blade airfoil design 



Pic here 
according to 

topics

Problem description and setup
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• This study leverages the Finite Volume Fluent Solver to 
meticulously investigate the impact of J-shaped configurations 
on the aerodynamic performance of airfoils for vertical axis wind 
turbines, employing the Unsteady Reynolds Averaged Navier 
Stokes (URANS) governing equations. The research endeavors to 
contribute to the understanding of these configurations by 
presenting a comprehensive analysis through a turbulent, 
incompressible, and two-dimensional flow model. 
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H-Darrieus wind turbine 
geometry features
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Characteristics Details

No. of blades 3

Rated power 3.5 kW

Chord length 0.4 m

Turbine radius 1.25 m

Blade profile NACA0015

Solidity 0.48

Wind speed 10 m/s

Reynolds no. 416,254

Table 2. Main geometrical rotor characteristics
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Wind turbine governing equations
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Numerical details and solver setup
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Figure 13. Computational domain
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Figure 14. Grid distribution around NACA 0015
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Figure 15. Grid distribution around NACA 0015
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Figure 16. Grid distribution around NACA 0015
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Figure 17. Mesh independence study
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Numerical setup
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Simulation assumptions:

• k-ω SST model.
• SIMPLE algorithm .
• Utilizing a second-order upwind approach.
• The outlet boundary is represented as a pressure outlet.
• the surface of the airfoil is described as a non slip wall.
• the inlet boundary is represented as a velocity inlet.
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λ Time step (s)

0.2 1.6 0.005454

1.25 10 0.0008727

1.6 12.8 0.0006817

2 16 0.0005454

2.5 20 0.0004363

Table 3. ω and ∆t for different λ.
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Figure 18. Number of revolutions until convergence of simulated Cp values at various λ.
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VERIFICATION AND VALIDATION
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Figure 19. CP comparison between the present study and Daróczy et al. at                                                    

different λ
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J-BLADE CONFGURATION
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Figure 20.(a) J-blade airfoil design 



Pic here 
according to 

topics
Figure 20. (b) the grid distribution
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Figure 20. (b) the grid distribution
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Figure 20. (b) the grid distribution
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RESULTS AND DISCUSSION
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Standard operating conditions
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Figure 23. Cm comparison between NACA0015 (red) and J-blade (blue) at                                                         

λ =1.25(a)
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Figure 24. Cm comparison between NACA0015 (red) and J-blade (blue) at                                                         

λ = 1.6 (b)
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Figure 25. Cm comparison between NACA0015 (red) and J-blade (blue) at                                                         

λ =2.5(c)



Pic here 
according to 

topics

• The torque values of the J-blade airfoil and the NACA0015 airfoil are 
comparable. For the majority of the operating zone, the J-blade 
airfoil outperformed the NACA0015 airfoil in terms of performance.

• The J-blade airfoil generated torque equivalent to the NACA0015 
airfoil at λ of 1.25 and 1.6, but it was more uniform, which added 
benefits in terms of energy generation and mechanical stresses. 
Nevertheless, the J-blade airfoil's performance began to lag behind 
that of the NACA0015 airfoil at λ of 2.5.
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Figure 26. Contours of the velocity magnitude at λ =1.6 around the airfoil for 

NACA0015 (left) and J-blade (right)
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Figure 26. Contours of the velocity magnitude at λ =1.6 around the airfoil for 

NACA0015 (left) and J-blade (right)
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Figure 27. Contours of Gromeka acceleration vector magnitude in leeward region At λ 

=1.6 Around blade for NACA0015(left) and J-blade (right)
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Figure 27. Contours of Gromeka acceleration vector magnitude in leeward region At λ 

=1.6 Around blade for NACA0015(left) and J-blade (right)
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• On the pressure side, the J-blade airfoil displays vortexes, yet the 
flow characteristics are not significantly affected by this cut. Figure 24 
illustrates how the slight increase in drag causes just a slight 
reduction in torque in that area.

• With regard to the contours in the leeward zone, both airfoils exhibit 
significant flow separation. It is noteworthy, however, that the J-blade 
design exhibits the lowest vortex production, as shown in Figures 26, 
27. 
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Figure 28. Contours of turbulence intensity λ =1.6 around the turbine for NACA0015 

(upper) and J-blade (down)
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Figure 28. Contours of turbulence intensity λ =1.6 around the turbine for NACA0015 

(upper) and J-blade (down)
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• Thus, with λ = 1.6, Figure 28 displays examples of the turbulence 
fields for this airfoil. The vortex shedding in the leeward zone is a 
substantial influence detected in the velocity field. 

• The Gromeka acceleration vector contour charts given in Figure 27 
indicate how the J-blade airfoil greatly lowers the creation of vortices 
and shedding during passage in the leeward zone. 

• In Figure 28, the contour plots of turbulence intensity are provided to 
offer a more complete study of the effect of this vortex production. 
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• Thus, combining both factors results in a uniform wake behind the 
turbine for the J-blade airfoil. 

• Because turbulence from one turbine impacts the energy production 
of the next, we may use this consistency by deploying more and 
more wind turbines in the same geographical location, resulting in 
higher energy yields and cost savings. 

• The instability in the wake raises the mechanical stresses and lowers 
the turbine's energy production.
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Starting Torque
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Figure 20. Averaged Cm for λ=0.2 of NACA0015 (left) and J-blade (Right)
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• The simulated airfoil reveals that the J-blade airfoil has a 142%
increase in starting torque compared to the NACA0015 airfoil, as 
shown in figure 20. This rise in initial torque originates from the 
airfoil’s cut, which causes additional drag going through the leeward 
zone.

• The J-blade consequently acts as a consequence of simultaneous lift 
and drag forces. In addition, the J-blade's notch provides drag force 
that helps the blades rotate more swiftly.  Conversely, it enhances 
rotational efficiency by creating greater torque by harnessing the 
same wind more often.
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Figure 21. Contours of the Gromeka acceleration vector in leeward region at λ =0 .2 

around the airfoil for NACA0015 (left) and J-blade (right)
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Figure 21. Contours of the Gromeka acceleration vector in leeward region at λ =0 .2 

around the airfoil for NACA0015 (left) and J-blade (right)
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Figure 22. Contours of the velocity magnitude at λ =0 .2 around the airfoil for 

NACA0015 (left) and J-blade (right)
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Figure 22. Contours of the velocity magnitude at λ =0 .2 around the airfoil for 

NACA0015 (left) and J-blade (right)
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Conclusions:
This research introduces and investigates the performance of an enhanced J-shaped 

blade for the Darrieus turbine, specifically tailored to urban environments. Using the 
URANS governing equations, a turbulent, incompressible, two-dimensional flow model 
was developed, focusing on both experimental validation and numerical models. The 
study systematically compared the proposed J-shaped blade with traditional NACA0015 
blades, reproducing the Darrieus turbine to validate the numerical model in the range of 
low λ (λ = 1.5). The findings reveal that:

1.The J-shaped blade not only preserves power generation at the maximum efficiency 
point but also enhances uniformity, offering advantages in terms of fatigue stresses. This 
characteristic enables a more efficient placement of turbines in wind farms within the 
same land area.
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2.Crucially, the J-shaped blade demonstrated a remarkable improvement in starting 
torque, achieving a torque that is 142% larger than that of the NACA0015 airfoil. This 
enhancement positions the turbine as a more viable and efficient solution for urban 
settings, addressing the challenges associated with initial rotation in low-wind 
conditions.

In summary, the integration of the proposed J-shaped blade not only maintains the 
overall performance of the Darrius turbine but also brings substantial advancements in 
starting torque, making it a promising innovation for urban wind energy applications. The 
research offers significant perspectives for the development and enhancement of 
Vertical-axis wind turbines. Paving the way for more sustainable and effective energy 
solutions in diverse environmental contexts.
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