

The International Maritime Transport and Logistics Conference

Data and model dual-driven approach optimizing appointment quota of external container truck

Cuijie Diao, Huiyun Yang, Zhihong Jin*

College of Transportation Engineering Dalian Maritime University

Hilton Green Plaza Hotel - Alexandria, Egypt

Introduction

Non-Uniform Arrival of External Container Trucks

External Truck Arrival Sequence Directly Affects Container Yard Reshuffle Operations

原始组内顺序: 1→2→3→4→5 优化组内顺序: 4→2→5→3→1

Introduction

Port Traffic Congestion

(1) Port Authority Constraint
 (2) Rush Time Charge
 (3) <u>Truck Arrival Appointment</u>

Truck appointment process

 Arrival Appointment Based on Guidance Information

Truck appointment system interface

CONTAINERCHAIN	DASHBOARD	MY NOTIFI	CATIONS	REPORTS	· HELP	~ SEA	юн ۹				l.	O TRAN	SPORTER A	CCOUNT ~
Return notification			0)		0		0)				ICKUP	RETURN
		As	sigr	n a tir	ne slo	ot to	eac	h con	taine	ər				
				,	RET ACFS E-D	URNING TO EPOT BR	RISBANE							
				TODAY til 23.00	TUE open	WED	THU closed	F/I) open	0					
14:00 14:00 15 0 5 0 57:50 57:90 57	00 15:30 0 0 50 \$7:50	16:00 5 \$7:50	16.00 0 67.50	17:00 6 \$7:50	17:00 9 \$7:50	18:00 10 67:50	18:30 15 \$7.50	10:00 10 \$7:50	19.00 17 \$7.50	20:00 15 \$7:50	20:30 14 57:50	21:00 16 \$7,50	21:00 14 57:50	22:00 16 57:50
IME SLOT (required)	CONTAINER DE	TAILS	VE	HICLE Frank	160	TRAI	LER INFO	TR REF NO.	DRIVE	'n				
14.01 - 14:30 X ISO: 2	TCLU7407716		A	AW5123 ×		Doc	- 4	TRAIL1234	John	Snow	×	0		
	150:2210 GF	50:2210 GRADE:00				Pos	Poston v Prot22345059 Poston v El physione@gmail.com			al.com /				
ASSKIN	TCLU7407716 ISO: 2210 GRADELCO		Choose Venicle Q		Fro	Front v		John	Snow	×	8	Nease compl	ieto	
			40	In choose Vehicle		140	14G -		P10	122 345 669			equired field	•
assign a time slot									P.M	hanowitham	ai.com			

Limitation of truck quota within each appointment period

Literature

Model-driven approach

- Zhang et al. developed a BCMP <u>queuing network</u> to represent the queuing process of trucks.
- Ramírez-Nafarrate et al. constructed a <u>discrete event simulation model</u> to assess the effects of TAS.
- Li et al. proposed a hierarchical queuing network with <u>prioritization</u> to estimate the length of the truck queue [9]

Data-driven approach

- Azab et al. used a <u>simulation-based</u> optimization method to arrange the scheduling of truck.
- Caballini et al. optimized the truck appointment quotas by <u>clustering the demand</u> for truck operation tasks.
- Li et al. have created <u>a deep learning model</u> that combines the Gated Recurrent Unit (GRU) and Fully Connected Neural Network (FCNN) to accurately <u>forecast daily container arrivals</u> [16]

Main contribution

- The paper proposes an external container truck appointment quota optimization model that combines <u>both</u> <u>data-driven and model-driven.</u>
- The <u>data-driven approach</u> analyzes the <u>relationship between the number of arriving external trucks and the</u> <u>truck turnaround time</u>.
- > The <u>model-driven approach</u> aims to minimize the <u>waiting costs and the transfered number of external trucks</u>.
- The truck appointment quota optimization model considers the impact of <u>the operation type of container</u> <u>truck</u>.

Subdividing truck operation types

The key fields of collected data

Key fields	Meaning
CNTR_ID	The ID of the container
TRUCK_ID	The ID of the truck associated with the container
GATE_IN_DT	The timestamp of the container truck arrived at the terminal
GATE_OUT_DT	The timestamp of the container truck departing from the terminal
OPERATION_TYPE	The operation type of truck: picking up empty containers, delivering heavy containers, picking up heavy containers, delivering empty containers

General framework

Gaussian process regression

Programming modeling

(1)

(2)

(3)

(6)

(8)

The objective function

transfer number and transfer period

$$n_{wp} = N_{wp} + \sum_{q=1}^{|P|} g_{wqp} - \sum_{q=1}^{|P|} g_{wpq}, \forall w \in W, p \in P$$

 $\min Z = \sum_{\nu=1}^{W} \left| \sum_{n=1}^{P} c_{\nu} T'_{\nu p} + \sum_{n=1}^{P} \sum_{q=n}^{P} \alpha_{\nu} \left| g_{\nu p q} \left(q - p \right) \right| \right|$

$$\sum_{p=1}^{|P|} n_{wp} - \sum_{p=1}^{|P|} N_{wp} = 0, \forall w \in W$$

waiting time

 $T'_{wp} = f(n_{wp}), \forall w \in W, p \in P$

 $g_{wpq} = 0, \forall q \notin \left(\max\left(0, p - \delta_{w}\right), \min\left(|P|, p + \delta_{w}\right) \right)$

 $n_{wp} \leq m_w, \forall w \in W, p \in P$

 $g_{upq}, n_{up} \in \mathbf{N}$

 $T'_{up} \in \mathbf{R}$

- The constraint of the appointment quota, the transfer number and the truck demand
- (4) The truck turnaround time obtained from GPR
- (5) The deviation range of the transfer truck

(7) - The range of variables

Solution

The analysis of the data-driven approach

Figure 1: The relationship between the number of external trucks and the total truck turnaround time

The analysis of the data-driven approach

Truck operation type	$\sigma_{_f}$	1	R^2	MAPE (%)
Picking up empty containers	0.312	54.63	0.98	4.93
Delivering heavy containers	0.474	39.87	0.97	6.72
Picking up heavy containers	0.261	10.63	0.98	4.68
Delivering empty containers	0.914	21.87	0.97	7.71

 Table 1. The prediction results of Gaussian process regression

 Table 2.
 The prediction results of polynomial regression

Truck operation type	Displayed formula	R^2	MAPE (%)	
Picking up empty containers	$y = 0.007x^2 + 16.21x + 0.82$	0.94	7.46	
Delivering heavy containers	y = 21.22x - 10.45	0.96	8.42	
Picking up heavy containers	y = 26.83x - 15.78	0.97	8.83	
Delivering empty containers	$y = 0.011x^2 + 16.29x - 1.71$	0.96	8.18	

The results of the dual-driven approach

Table 3. The results of the proposed dual-driven approach

Truck operation type	Pre-optimization	After-optimization	The number of	The deviation	
Truck operation type	cost	cost	transferred trucks	periods	
Picking up empty containers	34,066	30,545	135	173	
Delivering heavy containers	33,834	32,448	32	36	
Picking up heavy containers	27,296	26,571	23	26	
Delivering empty containers	4,359	3,884	15	21	

The results of the dual-driven approach

Figure 2: The respective appointment quota plans of four truck operation types

The analysis of the dual-driven approach

Figure 3: The appointment quota plans of subdividing and unifying truck operation type

Conclusion

Dual-driven Approach:

Establishes a <u>dual-driven approach combining Gaussian process regression and a programming model</u> to optimize the truck appointment quota.

Model Comparison:

The results of Gaussian process regression have lower errors compared to polynomial regression.

> Optimization Impact:

Optimizing by means of <u>subdividing truck operation types is more efficient</u>, and the extreme of the truck appointment quota gets smaller.

The dual-driven truck appointment quota optimization approach utilizes historical data to accurately describe the relationship between the number of external trucks and the total truck turnaround time.

Future reserach

> Optimization of <u>variable gate configuration</u> <u>based on subdividing truck operation types</u>.

The truck turnaround time forcasted based on subdividing truck operation types. The optimization of variable gate configuration based on forcasted truck turnaround time.

> Consider the subdividing truck operation types with <u>dual transactions</u> container trucks.

Subdividing dual transactions container trucks and single transaction container trucks.

The International Maritime Transport and Logistics Conference "MARLOG 13"

Thanks for attention

& welcome to DMU

jinzhihong@dlmu.edu.cn

