

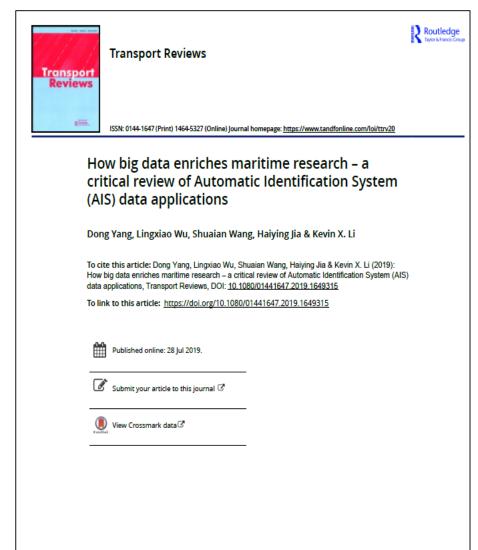
A Data-driven Global Port Performance Monitoring System: Models, Methods, and Applications

Dong Yang

Associate Professor & Associate Head Department of Logistics and Maritime Studies The Hong Kong Polytechnic University 15th Oct 2023

> Opening Minds • Shaping the Future 啟迪思維 • 成就未來

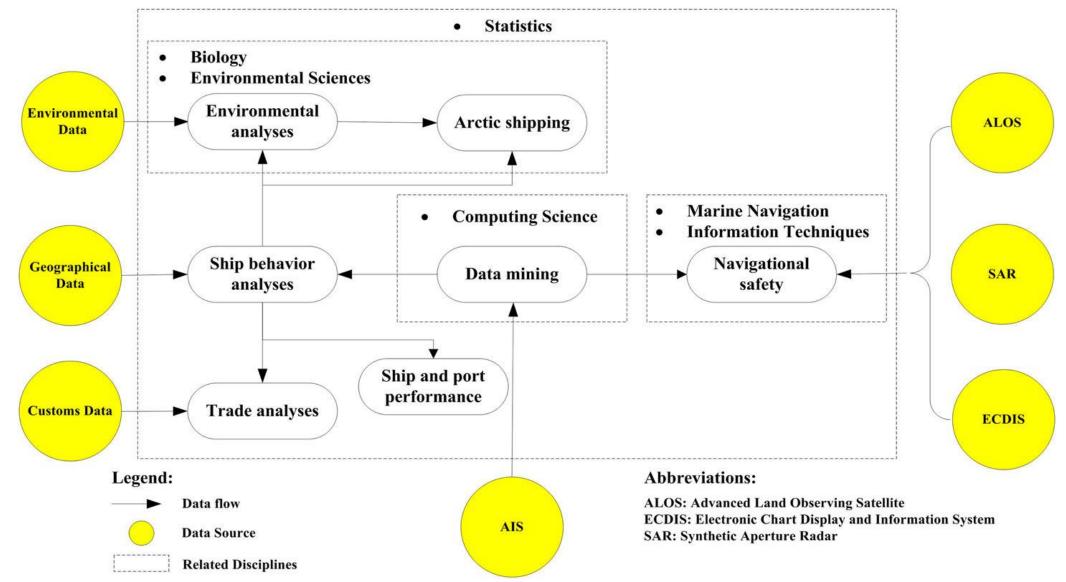
A real-time port monitoring system


- I Background and structure
- ➤ 2 Port congestion
- **> 3 Port productivity and throughput forecasting**
- 4 Port connectivity
- **5 Port skipping identification (liner service disruption)**
- ➢ 6 Vessel destination prediction

AIS: GPS of ships, but with more information

Table 2. Attributes of AIS data.

Data field	Туре	Description
AIS identity and location	Static	Maritime Mobile Service Identity (MMSI) and the location of the system's antenna on board
Ship identity	Static	Ship name, IMO number, type, and call sign of the ship
Ship size	Static	Length and width of the ship
Ship position	Dynamic	Latitude and longitude (up to 0.0001 min accuracy)
Speed	Dynamic	Ranging from 0 knot to 102 knots (0.1 knot resolution)
Rate of turn	Dynamic	Right or left (ranging from 0 to 720° per minute)
Navigation direction	Dynamic	Shipping course, heading, and bearing of the ship
Time stamp	Dynamic	Second field of the UTC time when the subject data packet was generated
Navigation status	Dynamic	Includes "at anchor," "under way using engine(s)," and "not under command"
Destination and ETA	Voyage- related	Destination port and the estimated time of arrival of the ship
Draught	Voyage- related	Ranges from 0.1 m to 25.5 m


Department of LOGISTICS

Faculty of Business 工商管理學院

1) Background and structure

Relationship matrix of AIS studies

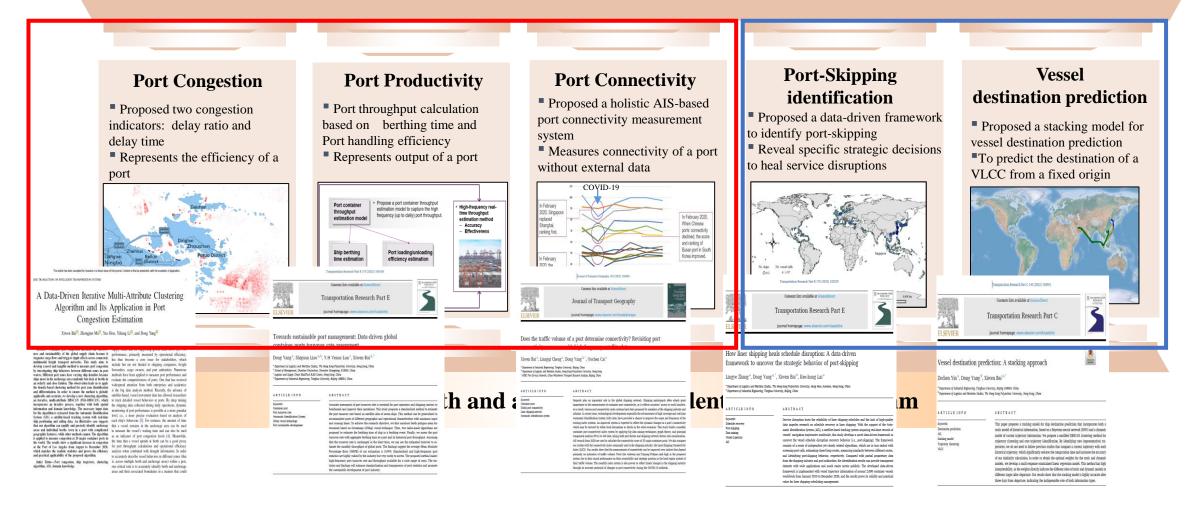
How to redefine port performance figures

- Over the last two years almost
 90 percent of the data in the world was generated.
- Maritime statistics on a monthly or yearly frequency fails to reflect the rapid change in the economy.

Maritime statistics regarding port performance

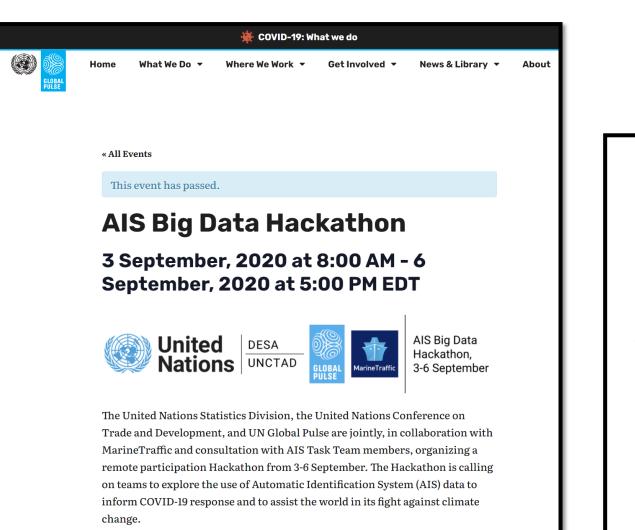
- Low frequency
- Delayed
- Unavailable and insufficient
- Difficult to obtain

How can AIS be used to redefine port performance figures


Break the data barriers and promote global port statistics standardization.

Enhance port management, promote digitization in the maritime industry, and facilitate regional economic development.

Background and structure



A global port performance monitoring system

2020 UN Hackathon Competition Third Place

AIS Big Data Hackathon

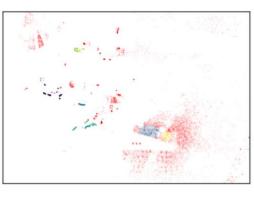
Congratulations to **Dong Yang** of Team **Barents Sea** for achieving 3rd place at the first United Nations AIS Big Data Hackathon.

The Hackathon was conducted from 3-6 September 2020 by the United Nations Statistics Division, the UN Conference on Trade and Development, and UN Global Pulse in cooperation with MarineTraffic and CCRi.

Robert Kirkpatrick Director **UN Global Pulse**

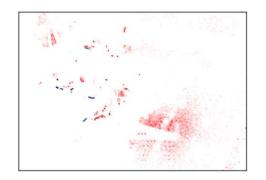
Jan Hoffmann Chief, Trade Logistics Branch **Division on Technology and Logistics** UNCTAD

Director United Nations Statistics Division DESA



An illustrative case

The radius is too large to identify the anchorages



Second Iteration

Reduce the radius, identify anchorages (red dots) and berths (other colors), but some points are still misidentified (blue/yellow)

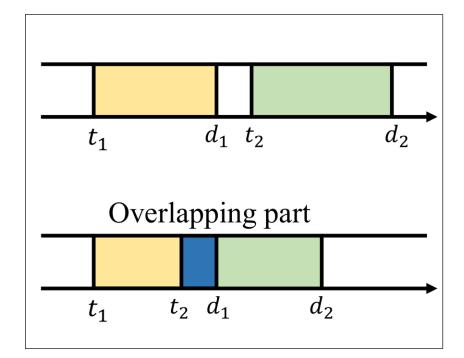
- > The ship densities are different in berth and anchorage area.
- > Ship arrive the anchorage first and then berth
- Ships' heading direction are different

Should we set different parameter in different ports? iteration.

Third Iteration

Continue to reduce the radius and identify the anchorages (red dots) and berths (other colors)

2 Port Congestion Estimation



Heading when the ship is at berth

Heading when the ship is at anchorage

Determining whether merging is possible

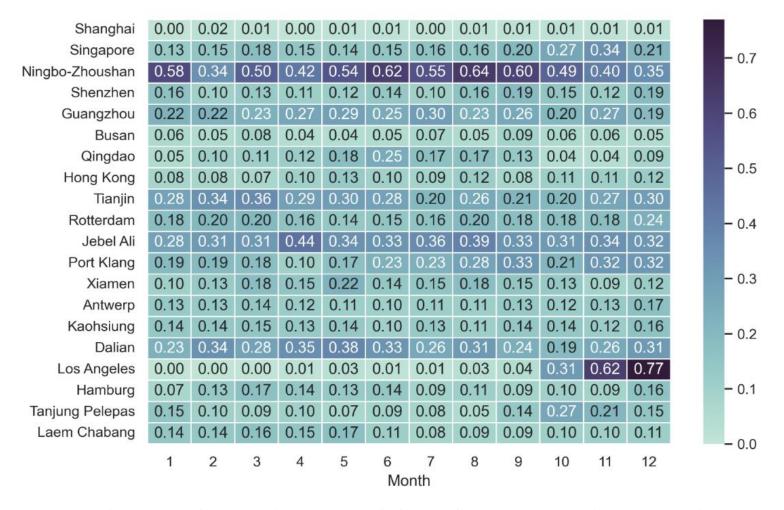
2 Port Congestion Estimation

The berths and anchorages

Terminal Daxie

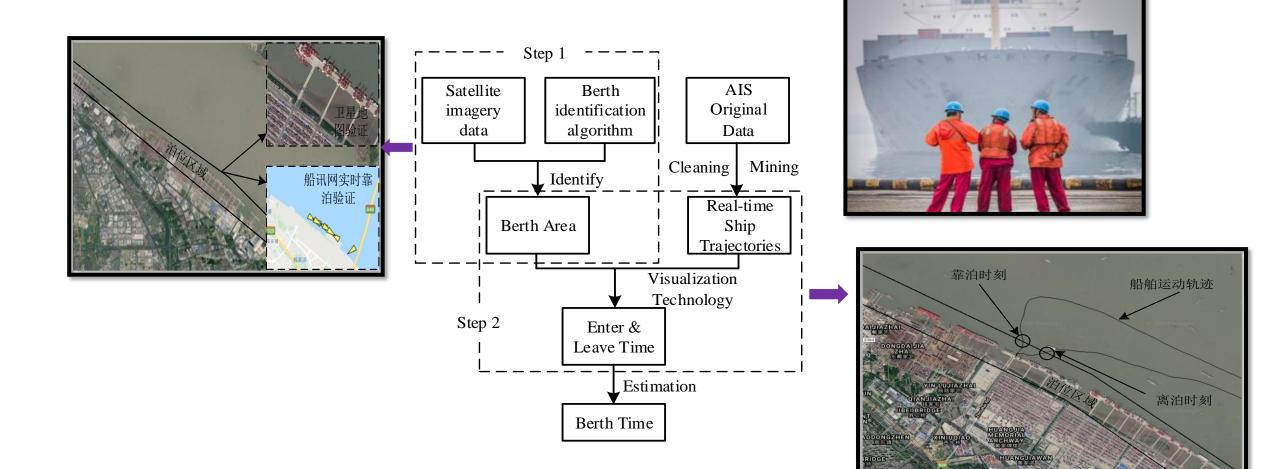
The result of IMA-DBSCAN

Terminal Yuandong



Shanghai	0.07	0.27	0.02	0.03	0.17	0.07	0.00	0.04	0.31	0.33	0.07	0.21	- 80
Singapore	2.16	2.24	3.48	3.29	2.90	2.94	2.72	2.79	4.41	7.64	10.91	4.50	
Ningbo-Zhoushan	19.49	9.64	14.94	11.20	13.97	20.11	17.07	24.47	22.36	16.34	10.20	9.46	- 70
Shenzhen	2.96	2.33	2.01	1.73	2.07	2.27	1.63	2.75	3.75	3.15	2.39	3.49	
Guangzhou	5.54	9.17	5.04	7.73	6.99	6.91	7.99	5.19	6.48	5.05	6.35	4.27	
Busan	1.89	1.53	2.00	1.34	1.57	1.35	1.43	1.45	2.84	1.26	1.59	0.99	- 60
Qingdao	1.26	3.69	2.82	3.85	7.26	7.39	3.91	4.78	2.80	1.01	0.85	2.19	
Hong Kong	1.78	3.64	1.81	3.13	3.05	2.05	2.18	2.69	1.62	2.01	2.27	2.15	- 50
Tianjin	7.51	16.12	12.29	6.83	9.09	7.46	3.85	6.39	5.09	4.26	7.47	7.52	
Rotterdam	5.22	7.23	5.72	4.90	2.94	2.82	3.37	4.48	5.03	5.73	3.94	7.18	40
Jebel Ali	5.68	6.04	6.97	10.47	9.59	7.53	10.55	10.76	7.09	7.44	7.62	6.59	- 40
Port Klang	3.40	2.84	2.61	1.18	4.55	4.49	4.58	6.38	7.44	3.77	8.75	11.92	
Xiamen	1.75	5.81	4.26	4.21	6.28	4.19	3.45	3.15	2.70	2.06	1.89	2.37	- 30
Antwerp	2.78	1.93	1.91	2.49	1.96	1.83	1.45	1.61	2.94	1.79	2.08	4.67	
Kaohsiung	2.91	4.30	3.01	2.55	2.78	1.62	2.48	2.17	2.81	2.92	1.88	4.28	20
Dalian	4.66	13.52	5.35	7.72	10.14	8.10	5.98	6.16	5.20	3.70	6.16	13.95	- 20
Los Angeles	0.00	0.00	0.00	0.32	0.47	0.30	0.28	0.51	1.58	13.55	42.63	80.53	
Hamburg	2.37	2.80	4.09	4.33	3.62	2.99	2.04	1.92	1.60	1.87	2.29	3.83	- 10
Tanjung Pelepas	3.26	2.31	2.27	1.67	2.16	1.62	1.16	0.78	3.01	7.94	5.76	3.36	
Laem Chabang	2.21	3.81	2.37	2.30	2.47	1.36	0.98	1.04	1.23	1.28	3.12	1.71	- 0
	1	2	3	4	5	6 Mo	7 onth	8	9	10	11	12	- 0

The Average Congestion Time (ACT) of top 20 container ports in 2020


The Average Congestion Rate (ACR) of top 20 container ports in 2020

Faculty of Business 工商管理學院 物流及航渾學系

Port productivity estimation

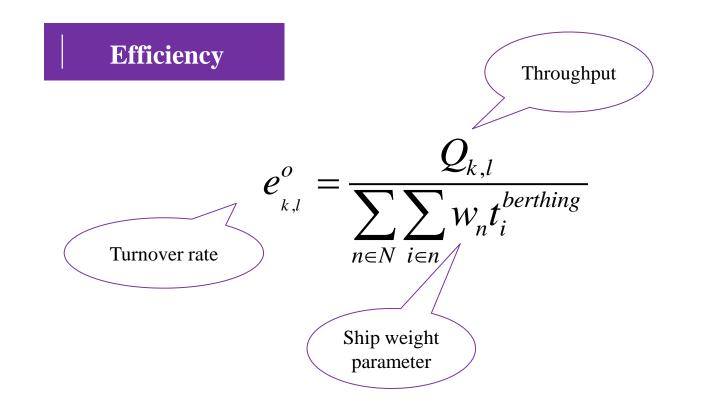
 $lat_{i,g+1}$, Start Trajectory of ship i $lng_{i,g+1}$ \rightarrow GMap visualization Berth polygon technology $lat_{i,g+3}$, $lat_{i,g+2}$, lat_{i,g}, $lat_{i,g+4}$, lng_{i,g} $lng_{i,g+2}$ $lng_{i,g+3}$ Berth polygon $lng_{i,g+4}$ Output $t_i^{in} = g - rep + 1$ f=1,rep=1 (b) Input *lat_{i,g}*, $lng_{i,g}$, and timestamp (g)Ν or Is the latig and Υ *f*=1, lng_{i} , inside the g=g+1berth polygon? Y (arrival) or N (departure) Υ Output $t_i^{in} = g - rep + 1$ f=rep or $t_i^{off} = g - rep + 1$ Ν *f=f*+1, t_i^{in} (rep)= t_i^{in} (rep-1) *f*=1, N, g=g+1g=g-rep+1, or $t_i^{off}(rep) = t_i^{off}(rep-1)$ *rep=rep*+1 Y Output $t_i^{in} = g - rep + 1$ or $t_i^{off} = g - rep + 1$

Department of LOGISTICS

Faculty of

Business 工商管理學院

Port productivity estimation



End

Port productivity estimation

of Department of LOGISTICS MARITIME SS MARITIME SP學院 物流及航運學系

Port productivity estimation

(a) Port of Shanghai

(c) Port of NB&ZS

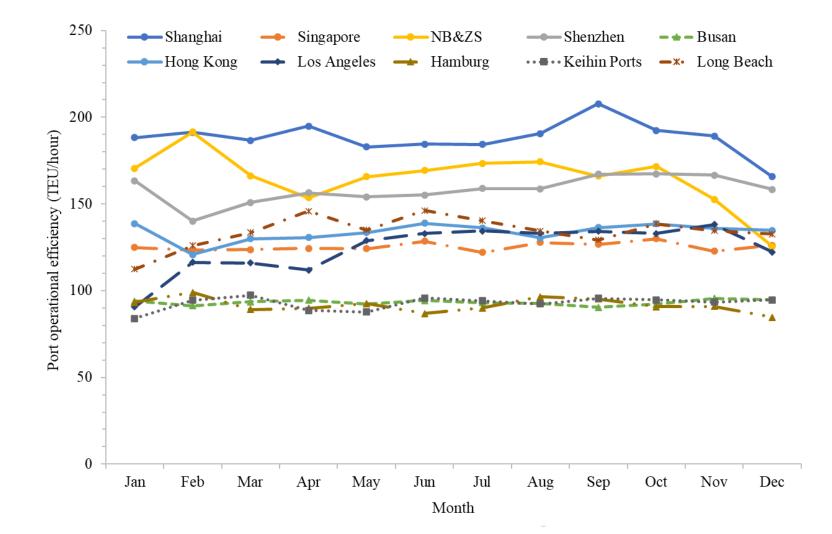
(b) Port of Singapore

(e) Port of Busan

(f) Port of Hong Kong

(h) Port of Los Angeles

(d) Port of Shenzhen


(g) Port of Hamburg

Port efficiency of during COVID-19

3

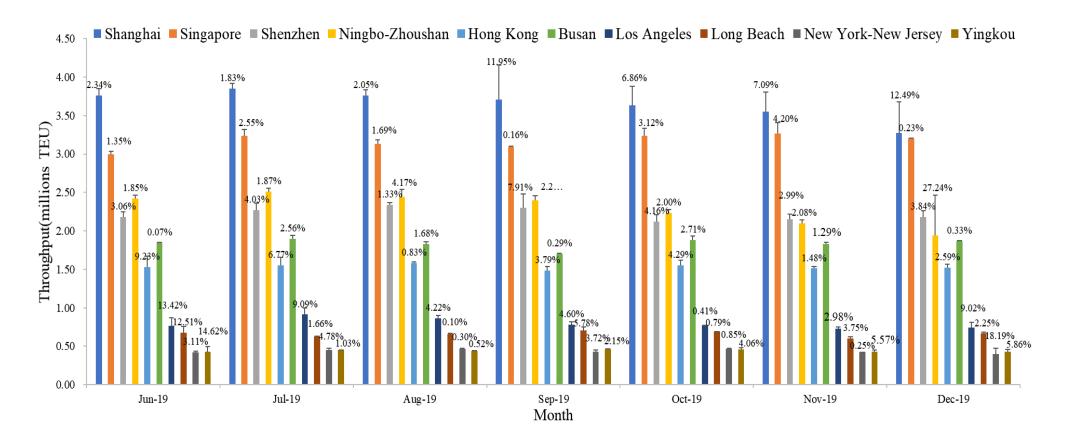
Port throughput estimation

The idea of moving average (MA) is used to future productivity of port

The mean absolute percentage error (MAPE), also known as mean absolute percentage deviation (MAPD), is used to measure the prediction accuracy .

It usually expresses the accuracy as a ratio defined by the formula:

$$ext{MAPE} = rac{100}{n}\sum_{t=1}^n \left|rac{A_t-F_t}{A_t}
ight|$$


where A_t is the actual value and F_t is the forecast value. The MAPE is also sometimes reported as a percentage, which is the above equation multiplied by 100. The difference between A_t and F_t is divided by the actual value A_t again. The absolute value in this calculation is summed for every forecasted point in time and divided by the number of fitted points n.

Port throughput estimation accuracy

3

MA(Month=5)	Shanghai	Singapore	Shenzhen	Ningbo- Zhoushan	Hong Kong	Busan	Los Angeles	Long Beach	New York- New Jersey	Yingkou	Average
MAPE	6.37%	1.90%	3.90%	5.93%	4.14%	1.28%	6.25%	3.83%	4.46%	4.83%	4.29%

Research Gap	Categories	References			
	Port-perspective indicators				
	Liner services	LSCI, PCI			
	Ship calls	LSCI, Jia et al. (2017)			
	Capacity/Cargo loads	LSCI, Wang et al. (2016), Jia et al. (2017)			
	Liner companies	LSCI			
	Connected countries/regions	LSCI, PCI			
	Maximum vessel	LSCI, Jia et al. (2017)			
	Network-perspective indicators				
	Influence	Jiang et al. (2015)			
	Distance	Wang et al. (2016)			
	Accessibility	Low et al. (2009), Tovar et al. (2015)			

- Industry index mainly focus on indicators relating to port only;
- Academic papers discuss the network indicators, but difficult in calculation and only cover regions (due to data richness);
- Low frequency and delay publication.

Methodology

4.Degree Centrality

Represent the frequency of trade exchange for imports and exports

5. Closeness Centrality

Represent the convenience to reach other ports

6.Betweenness Centrality

Represent the relative importance to lie in any truck line 网络性指标 1.Vessel Visits The scale of liner services serving a port 港口访问

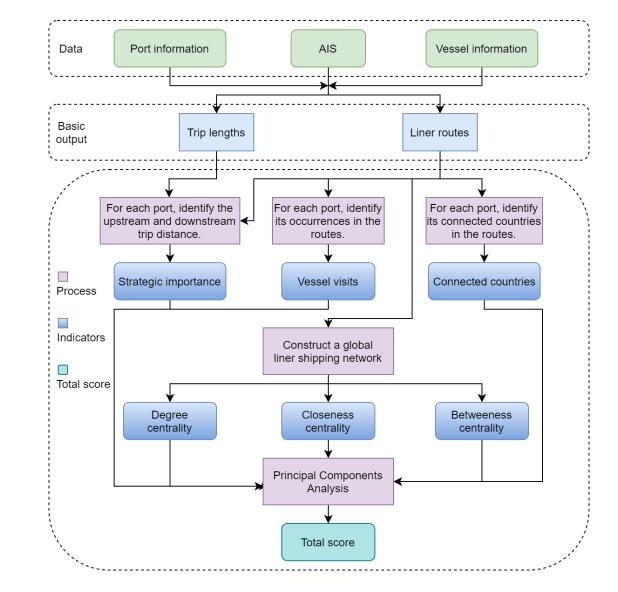
> Container Port Connectivity Index System

3.Strategic importance The frequency of intercontinental long-distance transportation

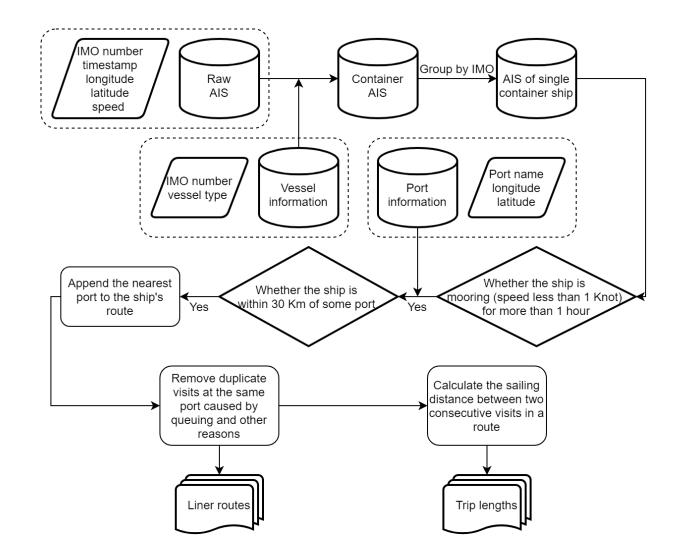
洲际远洋运输

2.Connected Countries

Department of

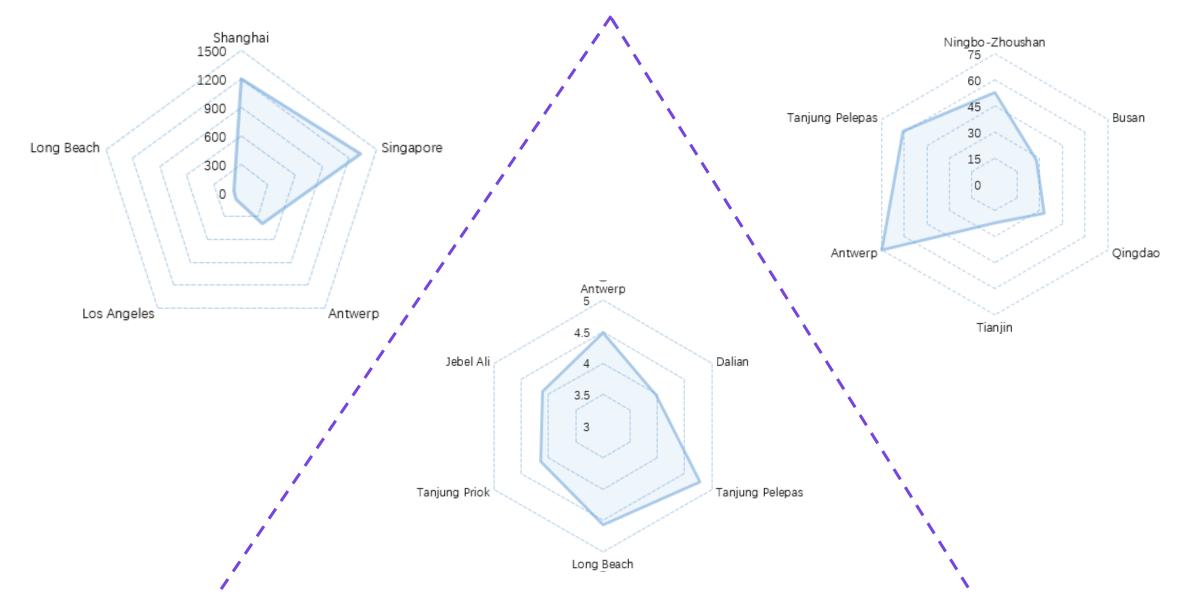

Faculty of Business 工商管理學院

The accessibility of a port through liner services 班轮服务数量


Methodology

Methodology

Some preliminary result

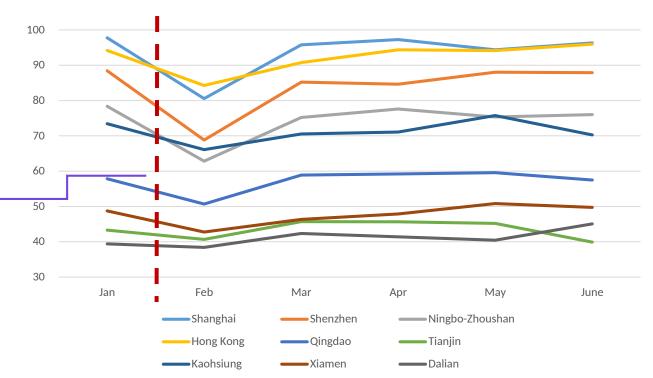

Port	Vessel Visits	Connected Countries	Degree Centrality	Betweenness Centrality	Closeness Centrality	Strategic Importance
Shanghai, China	1206	56	0.0612	0.0709	0.3344	4.4502
Singapore	1327	80	0.0633	0.0535	0.3676	4.2433
Shenzhen, China	950	67	0.0496	0.0677	0.2608	4.0067
Ningbo-Zhoushan, China	868	53	0.0426	0.0477	0.3482	4.4332
Busan, South Korea	697	28	0.0362	0.0796	0.1696	4.4233
Hong Kong, S.A.R, China	1073	54	0.056	0.0824	0.2339	4.0629
Qingdao, China	528	33	0.0272	0.0368	0.3271	4.1238
Tianjin, China	281	22	0.0137	0.0218	0.2889	4.2404
Jebel Ali, Dubai, United Arab Emirates	366	55	0.0177	0.0112	0.3018	4.1025
Rotterdam, The Netherlands	550	61	0.0289	0.0399	0.2024	4.2863
Port Klang, Malaysia	628	_56	0.0316	0.0325	0.3277	4.2126
Antwerp, Belgium	390	75	0.0197	0.0191	0.3747	4.4863
Kaohsiung, Taiwan, China	704	41	0.0362	0.0583	0.2567	4.4121
Xiamen, China	301	27	0.0161	0.0313	0.2659	4.3469
Dalian, China	213	19	0.0109	0.0227	0.2342	3.9768
Los Angeles, U.S.A	86		0.0035	0.0018	0.5919	4.206
Tanjung Pelepas, Malaysia	415	61	0.0209	0.0205	0.3531	4.7835
Hamburg, Germany	286	53	0.0151	0.0222	0.2721	4 4747
Long Beach, U.S.A.	76	26	0.0032	0.0021	0.4858	4.5753
Keihin Ports, Japan	462	31	0.0229	0.0354	0.2855	4.0922
Tanjung Priok, Jakarta, Indonesia	311	26	0.0149	0.0118	0.3868	4.1365
New York-New Jersey, U.S.A.	162	50	0.0076	0.0064	0.5103	4.0552
Colombo, Sri Lanka	317	46	0.0147	0.0056	0.455	4.0416
Ho Chi Minh City, Vietnam	415	20	0.0214	0.0314	0.3044	4.1107
Bremen/Bremerhaven, Germany	216	49	0.0109	0.017	0.2519	4.4909
Hanshin Port, Japan	406	23	0.0214	0.0389	0.2193	4.2438
Manila, Philippines	212	16	0.0105	0.012	0.3366	4.045

4) Port connectivity

Department of LOGISTICS & MARITIME STUDIES **Business** 工商管理學院 物流及航運學系

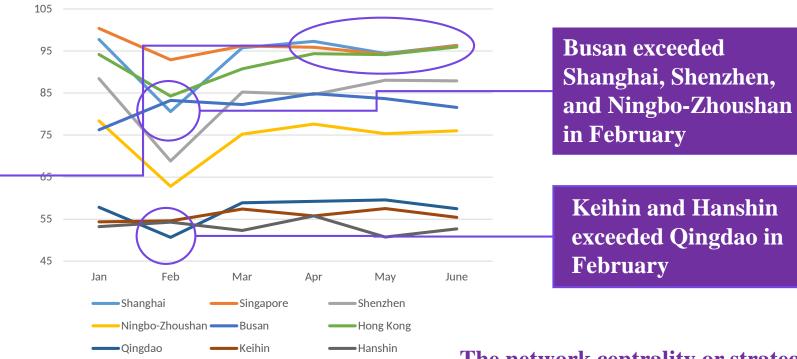
Faculty of

Some preliminary result



Results

Chinese ports


In February 2020, the Port Connectivity Index of Chinese ports declined significantly, and recovered from March.

Results

Top ports in Asia

Singapore ranked the first place in the first three months until Shanghai recovered in the next three months

The network centrality or strategic importance of these ports increased

Background

Although approximately 90% of the global trade is served by sea, various disruptive events may negatively interrupt the operation in liner shipping, including natural disasters, pandemics, political instability, terrorism, and inclement weather. Especially in recent years, there are rising concerns of uncertainties in global maritime logistics in the post COVID-19 era.

Widely adopted schedule recovery strategies:

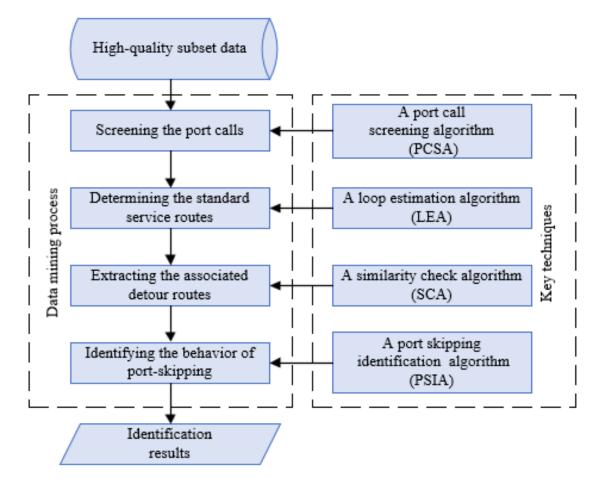
Adjusting the shipping speed (Speeding-up)

Swapping the order of ports of call (Swapping)

Skipping a port on the scheduled route (Port-skipping)

Data

The experimental data in this study is the AIS data of container vessels from January 2016 to December 2020.


Before identifying the behavior of port-skipping, high-quality trajectoryrelated subset data needs to be extracted from the raw AIS data. After cleaning the raw data, the total number of the observed vessels is 1,936 and the data size is around 13.2 G containing over 232.7 million trajectory records.

Parameter	Mean	Median	S.D.	Min	Max
Capacity (TEU)	1,758	1,421	1,207	194	13,574
Duration (month)	26	24	15	12	60
Trajectory record	120,234	108,185	60,835	7,004	343,969

Table 2. Descriptive statistics of the subset AIS data.

5 Port skipping identification

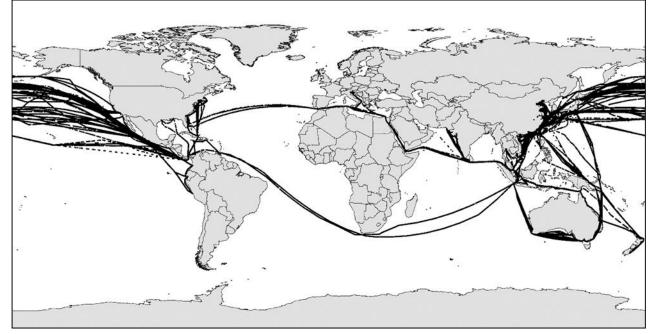
Methodology

The overall framework for port-skipping identification based on data mining algorithms

A **four-step** data-driven framework is devised to identify the behavior of port-skipping, each supported by an independent data mining algorithm.

Department of

Faculty of Business 工商管理學院


- The first step is to screen port calls of the observed vessels.
- The second step is to determine the standard service route (SSR) for each observed vessel.
- The third step is to measure the similarity between the SSR and the other loops.
- The fourth step is to identify portskipping behavior.

5 Port skipping identification

Applications

The overall identification results

The identified routes of the observed vessels belonging to COSCO SHIPPING Lines.

Taking COSCO SHIPPING Lines, for example, 53 vessels are included in the observed vessels, belonging to this worldleading liner shipping company. The identified routes for these vessels are shown in the left figure, which cover around 92% of ports along the service routes published on the company's website (https://lines.coscoshipping.com/home/Ser vices/route).

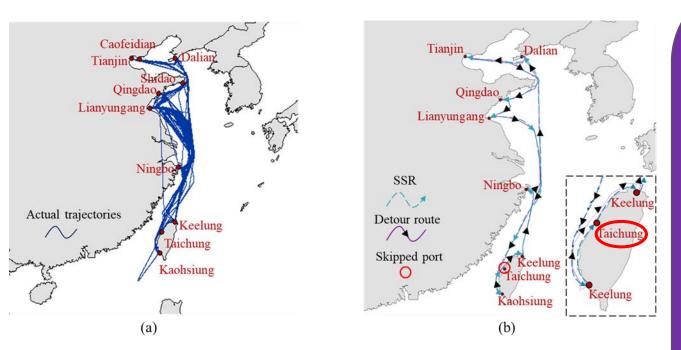
Applications

The overall identification results

The port-skipping status of the top-ranked ports.

Port	No.	Ranking	Skip ratio	Port	No.	Ranking	Skip ratio
Charleston	1	76	4.17%	Balboa	24	53	0.31%
Melbourne	2	71	3.57%	Shanghai	25	1	0.30%
Taichung	3	94	1.57%	Colombo	26	23	0.29%
Rizhao	4	35	1.08%	Guayaquil	27	84	0.28%
Port Said	5	43	0.99%	Xiamen	28	13	0.27%
Nagoya	6	77	0.97%	Lianyungang	29	36	0.25%
Qingdao	7	6	0.94%	Tianjin	30	8	0.23%
Taipei	8	88	0.85%	Piraeus	31	33	0.23%
Felixstowe	9	49	0.84%	Hong Kong	32	9	0.18%
Tanjung Pelepas	10	15	0.84%	Kaohsiung	33	17	0.16%
Le Havre	11	68	0.66%	Incheon	34	60	0.15%
Yokohama	12	72	0.52%	Shenzhen	35	4	0.14%
Mersin	13	87	0.51%	Barcelona	36	54	0.11%
Tanjung Priok	14	26	0.45%	Yantai	37	52	0.10%
Bremerhaven	15	37	0.45%	Rotterdam	38	10	0.09%
Kobe	16	73	0.40%	Ambarli	39	70	0.09%
Tanger Med	17	24	0.40%	Singapore	40	2	0.09%
Algeciras	18	42	0.40%	Hai Phong	41	28	0.08%
Osaka	19	82	0.39%	Hamburg	42	20	0.07%
Gwangyang	20	85	0.38%	Port Klang	43	12	0.07%
Tokyo	21	46	0.35%	Antwerp	44	14	0.05%
Busan	22	7	0.34%	Laem Chabang	45	21	0.05%
Ningbo	23	3	0.32%	Ho Chi Minh	46	22	0.03%

The ports in the former half generally have a larger skip ratio and lower ranking than those in the latter half, most of which are regional shipping hubs or even global shipping hubs (such as Shanghai, Hong Kong, Singapore, Rotterdam, and Antwerp).

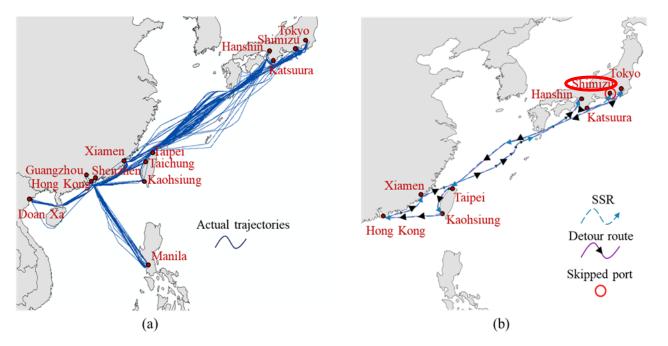

Faculty o

5 Port skipping identification

Comparison of the reducation and Scholarship Innovation-driven Education and Scholarship T商管理學院

Applications

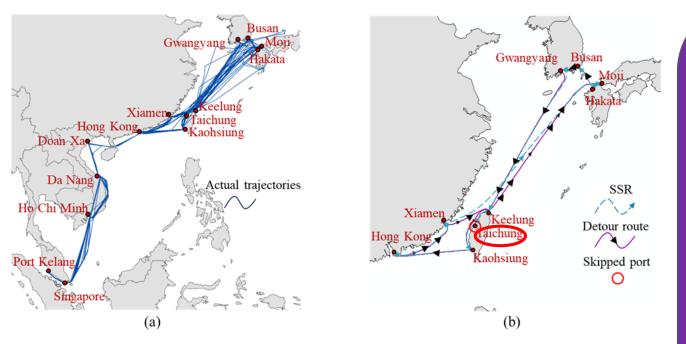
Schedule recovery scenario analysis Case 1: Ordinary port-skipping



An example of port-skipping in an ordinary case.

- The subset data covers the trajectories of the container vessel with IMO No. 9223758 during 2016, 2019, and 2020
- ➢ Based on the detected port calls from Algorithm 1, Algorithm 2 can generate 75 types of trajectory loops and select the loop with the highest frequency as the SSR (i.e., [Kaohsiung (1) → Taichung (2) → Keelung (3) → Ningbo (4) → Dalian (5) → Tianjin (6) → Qingdao (7) → Lianyungang (8)])
- ➢ In May 2020, a detour loop is identified by the data-driven framework as [Kaohsiung (1)
 → Keelung (3) → Ningbo (4) → Dalian (5)
 → Tianjin (6) → Qingdao (7) → Lianyungang (8)]

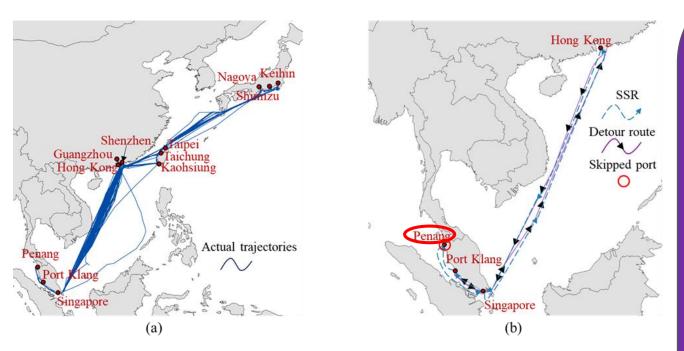
Applications Schedule recovery scenario analysis Case 2: Port-skipping on a route with external-port insertion



An example of port-skipping on a route with external-port insertion.

- Fig (a) illustrates the shipping trajectories of the vessel with IMO NO. 9233648 from January 2016 to December 2020.
- ➢ Based on the shipping trajectories of the China-Japan segments, the determined SSR is [Hong Kong (1) → Xiamen (2) → Hanshin (3) → Shimizu (4) → Tokyo (5) → Taipei (6) → Kaohsiung (7)]
- ➢ In May 2018, a detour loop is identified as [Hong Kong (1) → Xiamen (2) → Hanshin (3)
 → Katsuura (external) → Tokyo (5) → Taipei
 (6) → Kaohsiung (7)]

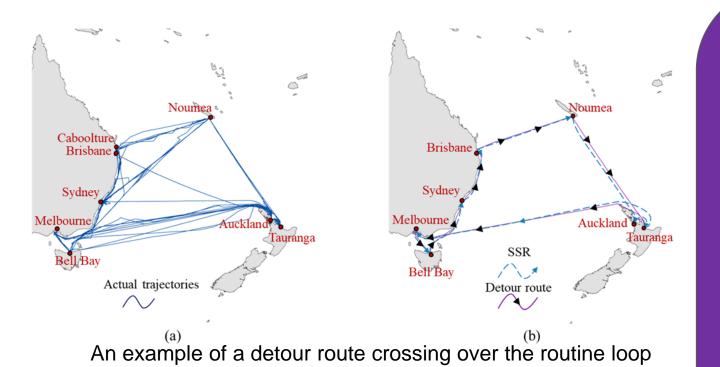
Applications Schedule recovery scenario analysis Case 3: Port-skipping on a route with internal-port insertion



An example of port-skipping on a route with internal-port insertion

- The shipping trajectories of the vessel with IMO No. 9319090 from January 2017 to December 2020 are depicted in Fig (a).
- ➤ The SSR is determined as [Gwangyang (1)
 → Keelung (2) → Taichung (3) → Kaohsiung
 (4) → Hong Kong (5) → Xiamen (6) → Moji
 (7) → Hakata (8) → Busan (9)].
- ➢ In May 2020, a detour loop is identified as [Gwangyang (1) → Keelung (2) → Kaohsiung (4) → Hong Kong (5) → Xiamen (6) → Keelung (2) → Moji (7) → Hakata (8) → Busan (9)]

ApplicationsSchedule recovery scenario analysisCase 4: Port-skipping on a route with a backhaul voyage



An example of port-skipping on a route with backhaul shipping

- The vessel with IMO No. 9302695 was mostly operated on the routes between China and the Malay Peninsula from January 2016 to December 2020.
- ➤ The SSR is determined as [Hong Kong (1) → Singapore (2) → Port Klang (3) → Penang (4) → Singapore (2)]
- ➢ After standardization, the standardized SSR is denoted as ([Hong Kong (1) → Singapore (2) → Port Klang (3) → Penang (4)] and the remaining one is saved to the backhaul segment ([Singapore (2)])
- ➢ In November 2018, a detour loop is denoted as [Hong Kong (1) → Singapore (2) → Port Klang (3) → Singapore (2)]

ApplicationsSchedule recovery scenario analysisCase 5: A detour route crossing over the routine loop

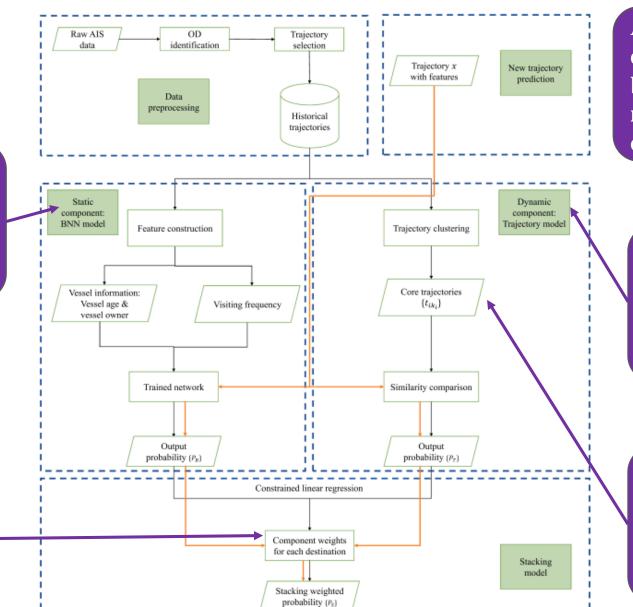
If a detour route is derived from a trajectory loop with a different origin port from the SSR, a detour route may cross over the routine loop.

- During 2016 and 2020, the vessel with IMO No. 9347982 was always engaged in liner shipping on the fixed segments between Australia and New Zealand.
- ➤ The SSR determined by Algorithm 2 is
 [Noumea (1) → Auckland (2) → Tauranga (3)
 → Melbourne (4) → Bell Bay (5) → Sydney
 (6) → Brisbane (7)].
- ➢ In March 2016, a detour loop is denoted as [Auckland (2) → Tauranga (3) → Melbourne (4) → Bell Bay (5) → Sydney (6) → Brisbane (7) → Noumea (1) → Tauranga (3) → Auckland (2)].
- Only swapping, no port-skipping.

Conclusion

Based on a series of tailored data mining algorithms, a novel data-driven framework is developed, which can make use of AIS data to stepwise screen port calls, extract standard service routes, detect anomalous vessel tracks, and finally achieve portskipping identification.

The visualized overall identification results suggest a positive correlation between traffic flow and the frequency of port-skipping at most ports. However, Singapore, due to its exceptional location and unique role in the global shipping network, exhibits the anomaly of high traffic flow and low frequency of port-skipping.



Methodology

A static model to predict the destination of a vessel either just before or just after it starts its voyage

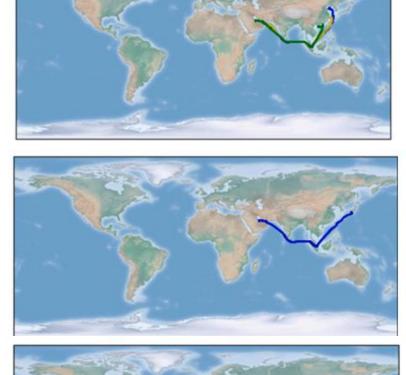
A multi-response constrained linear regression model to obtain the optimal weights for the static and dynamic

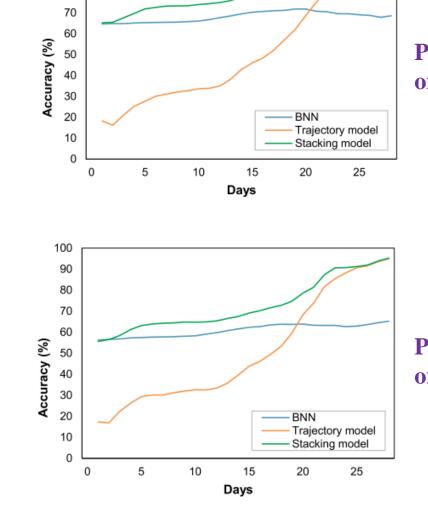
A stacking model for vessel destination prediction based on a Bayesian neural network (BNN) and a dynamic model

A dynamic model to update its prediction for the vessel's destination synchronously

A modified DBSCAN clustering method for trajectory clustering and core trajectory identification

6 Vessel destination prediction




Results

Core trajectories of China

Core trajectories of Japan

Core trajectories of Korea

100 90 80

Prediction accuracy on the training set

Prediction accuracy on the testing set

Thank you for your attentions!

